
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A283 446

SELECTL..

, AUG 1 9 1994

F THESIS

ENHANCEMENT OF EMAG:
A 2-D ELECTROSTATIC AND MAGNETOSTATIC

SOLVER FOR MATLAB

by

David Patrick Wells

September, 1994

Thesis Advisor Jovan E. Lebaric

Approved for public release; distribution is unlimited.

94-26392•k
II~ lil1fllllllltlliii lll K 9 4 8 18 1 ra

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704

Public reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, lo Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project
0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

ISep 1994 Master's Thesis

4. TITLE AND SUBTITLE Enhancement ofEMAG: A 2-D Electrostatic and 5. FUNDING NUMBERS
Magnetostatic Solver for MATLAB

6. AUTHOR(S) David P. Wells

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER

Monterey CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or
rosition of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; 12b. DISTRIBUTION CODE
distribution unlimited A

13. ABSTRACT (maximum 200 words)
This thesis presents the theory and development involved in the enhancement of EMAG, a 2-D electrostatic and magnetostatic

solver, to allow it to solve problems involving rotational symmetry. EMAG 2.0 solves rotationally symmetric problems using
discrete forms of the Poisson equations for electrostatics and magnetostatics in cylindrical coordinates. EMAG 2.0 is written
entirely in MATLAB script format. It allows users to define electrostatic or magnetostatic problems on a 2-D grid and solve the
problem for the potentials at uniformly spaced nodes on the grid. Graphical displays allow the users to visualize contour or mesh
plots of potential, vector plots of electric or magnetic fields and to calculate the charge or current enclosed in a user defined region of
the grid.

The EMAG 2.0 computational grid has a simulated open boundary which is generated by the Transparent Grid Termination
(TGT) technique. This boundary is unique to the type of system being solved. This thesis presents and compares two different
methods for generating this boundary, one involving a probabilistic model of the system and the other using a direct matrix solution
approach. Optimization of the Transparent Grid Termination technique is also explored.

14. SUBJECT TERMS Electromagnetics, education, computer software. 15. NUMBER OF PAGES
136

16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF ABSTRACT
REPORT PAGE ABSTRACT UL

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited.

Enhancement of EMAG:
A 2-D Electrostatic and Magnetostatic Solver for MATLAB

by

David P. Wells
Captain, United States Marine Corps

B.S., United States Naval Academy, 1988

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
994

Author. !_n__-P___••____'_ _ . _/Z

David P. Wells

Approved by: -Jovan E. Lebaric, Thesis Advisor

David C. Jenn,(f•/cond Reader

Michael A. Morgan, Chi'rman
Department of Electrical and Computer Engineering

ii

ABSTRACT

This thesis presents the theory and development involved in the enhancement of

EMAG, a 2-D electrostatic and magnetostatic solver, to allow it to solve problems

involving rotational symmetry. EMAG 2.0 solves rotationally symmetric problems using

discrete forms of the Poisson equations for electrostatics and magnetostatics in

cylindrical coordinates. EMAG 2.0 is written entirely in MATLAB script format. It

allows users to define electrostatic or magnetostatic problems on a 2-D grid and solve the

problem for the potentials at uniformly spaced nodes on the grid. Graphical displays

allow the users to visualize contour or mesh plots of potential, vector plots of electric or

magnetic fields and to calculate the charge or current enclosed in a user defined region of

the grid.

The EMAG 2.0 computational grid has a simulated open boundary which is generated

by the Transparent Grid Termination (TGT) technique. This boundary is unique to the

type of system being solved. This thesis presents and compares two different methods

for generating this boundary, one involving a probabilistic model of the system and the

other using a direct matrix solution approach. Optimization of the Transparent Grid

Termination technique is also explored.

IIIo~

TABLE OF CONTENTS

I. INTRODUCTION ... 1

A . O V ERV IEW .. I

B. EM A G .. 2

II. FD SOLUTION OF ROTATIONALLY SYMMETRIC GEOMETRIES 4

A. DISCRETIZED POISSON EQUATION .. 4

B. IMPLEMENTATION OF DISCRETE POISSON'S EQUATION

IN EMAG 2.0 ... 13

III. MODELING OF OPEN BOUNDARY ... 18

A. THEORY OF TRANSPARENT GRID TERMINATION (TGT) 18

B. CALCULATING THE TGT MATRIX: THE MATRIX SOLUTION

METHOD ... 24

C. CALCULATING THE TGT MATRIX: THE MONTE CARLO

METHOD .. 31

D. COMPARISON OF TGT METHODS .. 34

E. TGT OPTIMIZATION .. 36

IV. EMAG 2.0 EXAMPLES .. 49

A. CYLINDRICAL CAPACITOR .. 50

B. MAGNETIC FIELD ALONG AXIS OF A CIRCULAR CURRENT

LO O P ... 53

V. CONCLUSIONS .. 56

APPENDIX A (EMAG 2.0 LIST OF PROGRAMS) ... 59

APPENDIX B (MATRIX METHOD TGT PROGRAMS) 98

APPENDIX C (MONTE CARLO METHOD TGT PROGRAMS) 121

REFERENCES .. 128

INITIAL DISTRIBUTION LIST ... 129

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Jovan E. Lebaric, for his tremendous assistance

and support during the course of my research. His guidance and friendship have nmde it

a truly enjoyable learning experience. I would like to thank my wife, Laura, and my

daughter, Erin, for the love and support which have motivated me throughout the course

of my graduate work.

Accesion For
NTIS CRAM

DTIC TAB 0
Unannounced 0
Justification

By
Distribution I

Availability Codes

Avail and I or
U1st Special

v

I. INTRODUCTION

A. OVERVIEW

This thesis will describe the enhancement of EMAG, a Finite Difference Electrostatic

and Magnetostatic problem solver toolbox for MATLAB, to enable it to solve problems

involving rotational symmetry. Further, it will detail the results of the associated

research concerning the modeling of open boundary conditions. It will begin with an

introduction to the original version of EMAG and the method used in modeling its

boundary conditions, Transparent Grid Termination (TGT). In Chapter II, the finite

difference equations used in solving rotationally symmetric problems will be developed.

These results will be used in the third chapter as the solution to the open boundary

problem for rotationally symmetric systems is explored. Chapter III will also present an

analysis of two different methods used for solving the open boundary problem and will

compare the two methods with respect to accuracy, speed of calculation, and

computational memory requirements. Chapter IV will present examples of EMAG 2.0

capabilities and compare these results with known solutions.

B. EMAG

EMAG was originally developed by Roger Manke, Jr. at Rose-Hulman Institute of

Technology. It is a MATLAB toolbox that solves user defined electrostatic and

magnetostatic problems on a uniform square grid, subject to a distant Dirichlet boundary

of zero potentiaL Potentials at equally spaced nodes within the grid are calculated using

discretized forms of Poisson's equation. Using a mouse and keyboard, EMAG users

define a problem by drawing media and sources on a 2-D computational grid. For

electrostatic problems, the types of media include dielectric and perfect electric

conductor (PEC) material. For problems in magnetostatics, the media is magnetic or

perfect magnetic reluctor (PMR) material. PMR is a non-physical medium characterized

by constant magnetic vector potential throughout its volume and therefore, is the dual of

PEC. PMR media has infinite reluctivity or zero permeability. Two computational grid

sizes are available to the user. The 17x17, "coarse" computational grid provides rapid

results with one third of the resolution of the "fine" grid. The 5Ix51, "fine"

computational grid provides greater fidelity but requires more computation time. EMAG

output is in the form of graphical displays and numerical data. EMAG graphical displays

include 3-D mesh plots of potential, equipotential contour plots, and plots of electric or

magnetic fields. EMAG can also calculate numerical results for the enclosed charge

within a user specified area on an electric field plot or enclosed current on a magnetic

field plot. Furthermore, all output parameters (such as the matrix containing the

2

calculated nodal potentials) are available to the user for analysis. The original version of

EMAG solved problems that were invariant along an infinite axis into and out of the

computational grid (z-invariant). In Reference 1, Manke developed the finite difference

(FD) equations used in EMAG for solving z-invariant problems. Chapter II of this thesis

will present the development of the equations used in EMAG 2.0 for systems involving

rotational symmetry about a central axis.

The EMAG computational grid boundary is a layer of nodes which simulate a distant,

homogeneous Dirichlet boundary of zero potential. This boundary is developed using a

method referred to as Transparent Grid Termination (TGT). Use of the distant Dirichlet

boundary, in effect, surrounds the EMAG computational grid with free space and

maximizes EMAG's accuracy. TGT is used to allow the lengthy process of boundary

calculations to be performed only once. These results are then stored as a file and used

by EMAG in the solution of its open boundary problems. The theory behind TGT and

the methods used in calculating the boundary conditions for rotationally symmetric

systems will be explored in detail in Chapter III. [Ref 1.]

3

II. FD SOLUTION OF ROTATIONALLY

SYMMETRIC GEOMETRIES

A. DISCRETIZED POISSON EQUATION

This section will detail the process of developing the discretized Poisson equations

for rotationally symmetric systems. Although the electrostatic and magnetostatic Poisson

equations arc dual equations, for rotationally symmetric systems their discretized forms

are quite different from one another. This is unlike the discretized equations for

z-invariant systems which are identical for both electrostatics and magnetostatics.

Development of the discretized electrostatic Poisson equation begins by considering an

elementary volume in cylindrical coordinates as shown in Figures 1 and 2. Figure 1

shows an elementary volume in cylindrical coordinates and the locations of neighboring

discrete nodes relative to that volume. Figure 2 depicts a cross section of that volume.

4

E *N1* 4)1,p *

Ar

O-n4

FE

Figure 1. Elementary Volume

¢}c, Pi

0b <

Axis of Symmetry

Figure 2. Elementary Volume Cross Section

5

Poisson's equation relates electric scalar potential to the enclosed charge distribution and

media by

V2 =- p (1)

The goal of this section is to develop an equation which relates the potential at a given

node (say the center node) to the potentials of its neighboring nodes, the charge within

the volume, and the media parameters. Since this system is rotationally symmetric, there

is no variation in the media or the sources with respect to the angle of rotation and

•,fI= 4,,,. The center node is separated from its neighbors by four annular regions of

media, each of dimension Ar by Az in cross section. Since symrnetry requires that

potential remains constant with respect to 0, the 0 component of the electric field is zero.

Using the integral form of Gauss' Law

isD di Is ec~sd (2)

the constitutive relationship

D = eE, (3)

6

and assuming that the fields are constant over each face of the elementary volume, the

charge inside the elementary volume can be related to the electric flux penetrating

outward through each of the remaining four sides of the volume by

Ar Ar" Az Ar Az-E,(r- A-,z).- [(r-.-k)AO-&-.CA + (r-..A-)AO.-c-.c Left (4)

+E,(r+- Az). [(r+ -A) Az A A0z
2'-2 - BD+ r - -. Right

Az Ar A r (r + kr) . A-+E,(r,z+-) [(r+-.AO 6+(r-AO.B Top
2 4 2 4 2

-[r~Az-T) [.zC+(r+'r)AOA.CD Bottom

= Qenclosed

where Q,.c.d is related to the volume charge density by

Qenclosed = prA6 Az. (5)

The next step is to relate the electric field components to the potentials of the discrete

nodes. Using the definition of electric scalar potential

E = - ,(6)

7

leads to the following FD equations:

E A(r + 'DAz)c (7)

-Ar = (8)
2,r~-z Ar

Ez(rz---) Az (4I),b.-- (9)

A2 Az~- (0

Substituting equations (7) through (10) into equation (4) and selecting Az = Ar = Al to

establish a uniform grid yields

Ar CA,4+eC• ArSB +SoDr

_ýýr ('A +c E)BB +E(D
2r 2 2r 2

(IAr Ar 1 Ar+ Ar),
+ 4r 2 4r](,+[4r 4r JDb

3 Ar)(w •.+c., 3A~r EB+CD

-[(2 - -c-r 2)' -7-r)(2 R)J' =-pv(A/ 2 =-P (C/nm)

which is the discretized Poisson equation for a rotationally symmetric electrostatic

system.

8

The development of the magnetostatic Poisson equation also begins with the

elementary volume in cylindrical coordinates. A cross section of the elementary volume is

shown in Figure 3.

A, 1C

Ar

Axis of Symmetry

Figure 3. Magnetostatic Elementary Volume

In this figure, the current (I) and the magnetic vector potentials (A1, A,, A,, Ab and Ac)

are all in the 0 direction. This allows the magnetic vector potential to be treated as a

scalar. Using this fact along with the integral form of Ampere's Law, a discretized form of

Ampere's Law can be developed. Ampere's Law relates the magnetic field around a

9

closed path to the total current flowing through any surface bounded by that path and is

given by

fC•e dI= j ds (12)

where H is the magnetic field and J is the current density. Selecting a uniform grid for

EMAG (Al - Ar = Az) results in a discretized form of Ampere's Law

HAr+HrAr+HtAr+HbAr=Jc(Ar) 2 =I. (13)

The next step is to solve for the magnetic fields along each side of the elementary volume

containing the center node. This is accomplished by using the relationship

H x A)(14)

which relates the magnetic field to the magnetic flux density (the curl of the magnetic

vector potential) and the permeability of the media. Assuming that the magnetic flux is

constant along each side of the contour surrounding the elementary volume, the

reluctivity, lI/p, will be the average of the reluctivitics of the two homogeneous annular

regions through which the flux penetrates.

10

Using this value for reluctivity along with the definition of curl in cylindrical coordinate

systems and the fact that all of the magnetic vector potentials arc exclusively in the 0

direction, equation (14) becomes

-+ 1 8A0 1 - 1(rAe)--
H r + rr z (15)

where r is the center node's radial distance from the axis of rotation. Applying eN.-,,on

(15) to all four sides of the volume results in the following four FD equations for the

magnetic fields shown in Figure 3:

H, = 1(j + -(A -At (16)

=b A -A (17)

H = +2 itD")(AcA)

H, !(.l + I-X ,rAc -(r•+,Ar)A,)(r- (18)

2

11

Substituting equations (16) through (19) into equation (13) yields

2+ +(;l+-L)X(l - -2(---))JA , (20)

+ 02 p- +-+2C 2r 2 DP PD] 2r
VAr 1

11 11L(-+--)J Ab= I, (Amps).
2PA AD 2 Pc AD

Equation (20) is the discretized magnetostatic Poisson equation which relates the

potential of the center node to the potential of its four nearest neighboring nodes and the

current through the center node. Although equations (11) and (20) look very different

from one another, they both tend toward the z-invariant Poisson equations used in

EMAG as r tends toward infinity. This fact is the basis for the approach used to modify

the EMAG code presented in the next section.

12

B IMPLEMENTATION OF DISCRETE POISSON'S EQUATION IN EMAG 2.0

In order to solve rotationally symmetric problems, the original version of EMAG

needed to be modified in three ways. First, in the equation solver subprograms, code

needed to be added which applied the Poisson equations derived in the previous section.

These types of modifications are the subject of this section. The second set of

modifications, to be discussed in Chapter III, involved the use of rotational symmetry

equations to develop the TGT boundary data. The third set of modifications involved

addition of code to allow EMAG 2.0 users to choose between z-invariant and rotationally

symmetric systems. This last set if modifications will not be discussed except in the

context of how EMAG 2.0 is used. All modified EMAG subprograms can be found in

Appendix A.

The original version of EMAG uses two different methods for calculating the

potentials across the computational grid. The first method, intended for solving coarse

(17 x 17) grid problems, utilizes a system matrix containing all information about media

and the TGT boundary. This system matrix is generated by the MATLAB script file

makesys2.m. The script file matsolve.m then applies the user specified source

information and solves the system of equations using matrix operations. To modify the

coarse solver for rotational symmetry, equations (11) and (20) were used. Specifically,

the factors in these equations which weight the media parameters based on the center

node's relative distance from the axis of symmetry (such as (1 - -)) were inserted into
2r

13

duplicates of the z-invariant equations. These equations are used instead of the

z-invariant set when the user specifies that the problem to be solved has rotational

symmetry. The system matrix approach was not used in the original version of EMAG in

solving fine (51 x 51) grid problems, because of the large size of a fine grid system matrix

and the fact that the sparse matrix tools were not yet included in MATLAB. For a fine

grid of this size, the system matrix would contain nearly 6.8 million elements and require

54 megabytes of memory if stored as a full matrix [Ref. 1]. As a result, a second, more

memory conservative solution approach was utilized.

The method originally used in EMAG for solving fine grid problems was a Jacobi

iterative solver. (The reasons for choosing a Jacobi solver are detailed in Reference 1.)

This solver is contained in the MATLAB script file itersoln.m. The Jacobi solver can

utilize saved results from previous problems, the results of the coarse solver or a default

set of potentials (zero except where known a priori) as the starting point for its iterations.

The EMAG user specifies a desired percent error at which to stop iterating the solution.

The computational time required to solve a problem using this approach increases with

the degree of accuracy required. Because the modifications leading to EMAG 2.0 were

accomplished using MATLAB 4.0, sparse matrix operations were utilized in the system

matrix solver to allow it to be used for both coarse and fine grid solutions. The Jacobi

solver however, was not eliminated since it has the useful advantage that it can use

previous solutions as the starting point for its iterations, thereby increasing its speed of

14

convergence to the solution. For example, by using the coarse grid solution as a starting

point for a fine grid calculation, the iterative solver can often run faster than the system

matrix solver with an estimated error less than 1%. The system matrix approach, which

requires the same computational time regardless of the problem, cannot take advantage

of a previous solution, but generally runs faster than the Jacobi solver without an

accurate starting set of potentials. Accordingly, in EMAG 2.0 the user has a choice of

using either the Jacobi solver or the system matrix solver when solving a problem on the

fine grid. Fine grid problems using the system matrix approach are solved using the

matsolvfm and makesysf m script files. The iterative solver in itersoln.m has been

modified to include the Poisson equations for rotational symmetry. Modifications to

itersoln.m were similar to those made to makesys.m in that the rotational symmetry

unique terms were applied as factors weighting the media parameter terms.

When EMAG 2.0 users desire to solve a rotationally symmetric problem, they simply

answer "y" (or "Y") to the question "Do you want to solve a rotationally symmetric

system?" in the "New Domain Region" selection part of the EMAG session. Once this

choice is made, EMAG 2.0 remains in the rotational symmetry mode until a new domain

region is requested. As a reminder that EMAG is in the rotational symmetry mode, a

border around the computational grid is plotted in red. This border is white in the

z-invariant mode. The user then defines cells of media and sources on the computational

grid in the same manner as in the z-invariant case except that only the right half of the

15

cross section of the system is visible. For problems in electrostatics, the axis of

symmetry is parallel and one half of an inter-nodal distance (A/) to the kft of the left

side of the computational grid. For magnetostatic problems, the axis of symmetry is

parallel and a whole inter-nodal distance to the left. These arrangements take advantage

of symmetry, maximize the useful input area of the computational grid, and eliminate the

mirror images that would result if the axes of symmetry had been chosen to be in the

center of the computational grid. They also allow reuse of the drawing routines used for

z-invariant systems. A sample electrostatic problem on the EMAG 2.0 rotational

symmetry computational grid is shown in Figure 4.

| Axis of Symmetry
Inner Conductor

1.4

1.21

I - Diý,ectric

0.8

o6 4--- Ou•, Com ductor

0.4

0.2 -"R• fd Border

o0 .5 1 1.5 2

I Axis of Symmetry

Figure 4. Section of Coaxial Cable on Computational Grid

16

Figure 4 depicts the right half cross section of a short segment of a coaxial cable as it

would appear on the EMAG 2.0 computational grid. (If the user had not requested a

rotationally symmetric problem, this same picture would represent a parallel plate

capacitor extending infinitely into and out of the computational grid along the z-axis.)

In addition to the changes to the system solver programs listed above, EMAG's

subroutines required several other modifications to accommodate rotational symmetry.

First, the subroutines cefleld.m andfefleld.m, which plot the electric or magnetic fields

for the coarse and fine grids respectively, were modified so that the magnetic field would

be calculated using the definition of curl in cylindrical coordinates. Next, the enclosed

charge calculation subprogram, q..calc.m, which performs a flux integral, was modified

to account for the fact that the area of the faces of the elementary volume are functions of

the volume's distance from the axis of rotation. This modification results in the charge

enclosed in a user specified area of the rotationally symmetric computational grid being

expressed as total charge (in Coulombs) instead of charge per unit length

(Coulombs/meter) as it is in the z-invariant case. The last modification was applied to

the enclosed current subroutine i_cac.m. This subroutine was modified so that the

enclosed current for rotationally symmetric systems is calculated using the definition of

curl in cylindrical coordinates. The modified versions of all the above subroutines are

included in Appendix A.

17

III. MODELING OF OPEN BOUNDARY

A. THEORY OF TRANSPARENT GRID TERMINATION (TGT)

In order to quickly and accurately solve open boundary problems, EMAG uses a

technique called Transparent Grid Termination (TGT) to simulate the existence of a zero

potential, Dirichlet boundary far away from the user defined problem on the

computational grid. Using the known zero potential on the Dirichlet boundary and

defining all space outside EMAG's computational grid to be source free and

homogeneous, a very large system of Poisson equations involving the nodes inside the

Dirichlet boundary is partially solved in advance. The end result of this process is a

system of equations which relate the potentials of the nodes on the first layer outside the

computational grid (called the TGT boundary) to all of the nodes just inside of this layer,

given that there exists a distant boundary of zero potential. These equations are stored in

the form of a matrix (called the TGT matrix) which, once calculated, replaces the many

concentric layers of nodes in the homogeneous, source free region between the

computational grid and the distant Dirichlet boundary.

Since this original "buffer" zone of nodes was defined to be homogeneous and source

free, this TGT matrix does not change from problem to problem and in no way depends

on what may be defined within the computational grid for any particular problem. As

such, the TGT matrix is stored and reused over and over to solve any user defined

18

problem quickly. Since the TGT boundary relationships are calculated by partially

solving the larger physical system with a Dirichlet boundary, TGT provides exactly the

same solution as would be obtained by solving the user defined problem with a distant

homogeneous Dirichlet boundary. However "solving through" this unchanging buffer

zone once and storing the results eliminates repetitive and time consuming computations.

Solving the whole open boundary problem would require several hours on even the

fastest PC. The vast majority of this time would be spent solving through the buffer zone

which does not change from problem to problem. TGT simply allows one to devote this

time only once in the calculation of the TGT matrix and then to use the results of this

partially solved system for different problems. (Ref. 1]

Figures 5 and 6 illustrate the relationships between the computational grid and the

Dirichlet boundary for z-invariant and rotationally symmetric systems respectively.

The arrows in these two figures show how each node on the TGT boundary is globally

related to every node on the outer layer of the computational grid and the Dirichlet

boundary while each node on the computational grid is related only locally to its four

nearest neighbors [Ref. 2]. Notice that unlike the z-invariant computational grid

(Figure 5), the rotationally symmetric computational grid (Figure 6) has a distant

Dirichlet boundary on only three sides. The left side of the rotationally symmetric

computational grid for electrostatic systems is adjacent to the axis of symmetry and as a

result, has a Neuman boundary of zero gradient to its left. The axis of symmetry for

19

0.000 0.000o o
o 0

o .o 0 :•oo

0 00 0

0 ®00..-.®-.-0.-.0....
o eye: 0

0 0'
o 00e~e 0
00 SOSee 0

0 TOT boundary O

0 distant Dirichlet boundary 0
0..0-00.-0 0 -0-0-0-0--00- 0.0

Figure 5. z - Invariant System

S... 0 - . 0 ..QA)xis ofo
Rotation for 0
Electrotaics

.7 e.... .. 40 .®.....* o0Adss of
Rotationafor 0 0
Matostatics 0 0

0

distant Dinichiet boundary0

Figure 6. Rotationally Symmectric System

20

the magnetostatic rotationally symmetric system is placed on the left side of the TGT

boundary and is a homogeneous Dirichlet boundary. The reason for the different

placements of the rotationally symmetric electrostatic and magnetostatic computational

grids is that for magnetostatic systems with only 0 directed components of magnetic

vector potential, the potential is known to be zero on the axis of rotation. In contrast, for

the electrostatic system, it is the gradient of the electric scalar potential that is zero on the

axis of rotation. Different grid placements, therefore, take advantage of these known

facts in establishing the boundary conditions. As shown in Figures 5 and 6, EMAG

always uses a square computational grid and the TGT boundary is a layer of nodes one

inter-nodal distance outward from the last layer of the computational grid. This TGT

boundary contains all information about the distan! Dirichlet boundary required to solve

any problem drawn by a user on the computational grid with the same accuracy as

solving the much larger problem within the distant Dirichilet boundary. With the T -T

boundary matrix calculated in advance, EMAG only needs to solve the sparse system of

equations depicted by the topology map of Figure 7. (Ref 2]

21

Topology Map

00

11000 Vr I
200010 10 20 20

0 W IW)5 =' 2)

node number

Figure 7. EMAG System Sparsity Pattern

Figure 7 is a mapping of the non-zero elements in the matrix which relates the nodes

on the computational grid and the TGT boundary to one another. A spiral node labeling

pattern is used, starting from the upper left node on the TGT boundary and spiraling

clockwise inward to the center of the computational grid. The main "diagonal" is three

elements wide and represents the relationship between a node and its nearest neighboring

nodes on its right and left. These relationships are derived using the discretized Poisson's

equations, equations (11) or (20). The upper diagonal represents the terms which relate

each node to its neighboring node immediately inward, toward the center. The lower

22

diagonal represents the terms which relate each node to its neighbor outward, away from

the center. The dense square area in the upper left comer of the map represents the TGT

matrix. It is this densely packed matrix which relates the potentials of the nodes on the

TGT boundary to the nodes on the outer edge of the computational grid giventheIac

that there exists a distant Dirichlet boundary of zero potential. Whereas the diagonals

represent local relationships between a node and its neighbors, the TGT matrix relates

each node on the TGT boundary globally to alU the nodes on the outer edge of the

computational grid. The spiral numbering scheme is used in order that the TGT matrix be

densely packed with no non-zero elements, thereby minimizing its size. The next two

sections of this chapter will present two different approaches to calculating the TGT

matrix. The final section of this chapter will compare these techniques and present the

results of research into the optimization of TGT. [Ref 2]

23

B. CALCULATING THE TGT MATRIX: THE MATRIX SOLUTION METHOD

The starting point for calculating the TGT matrix of coefficients is always the

discretized Poisson equation for the given system. Although this chapter will describe

the process of calculating the TGT coefficients for a rotationally symmetric system, the

procedure is "generic" and has also been used to calculate TGT coefficients for

z-invariant systems. Since the buffer zone between the distant Dirichlet boundary is

homogeneous and source-free, the discretized Poisson equation for electrostatics

(equation (11)) simplifies to a discrctized Laplace equation given by

4• 0= (1 1 r)4)1+(1+ 1-r) 0r +01 +(b. (21)
2(g) (r)

The corresponding equation for magnetostatics is

[4 1 +]AC (22)

Ar 12) r 2)

(1 1)AI+(l + 1)A,+A+Ab

Ar 2' Ar 2

Using the appropriate Laplace equation, it is a straightforward process to generate a

set of three matrices which relate each node to its four neighbors. One matrix, M,,

relates the nodes on a layer (say layer m) in the homogeneous, source-free buffer zone to

24

their neighbors on the next layer of nodes outward toward the Dirichlet boundary (say

layer 1). The second matrix, M., relates nodes on layer m to the nodes on the next layer

inward toward the computational grid (layer n). The third matrix, M., relates the nodes

on a layer to themselves and their two neighbors on the same layer. Because these

matrices have a discernible pattern, and are functions of the computational grid size and

the relative size of the m-th layer of nodes, they can be generated algorithmically.

Functions for creating these matrices via MATLAB are included in Appendix B. The

three functions makemkc.m, makemnc.m and makemmc.m produce the MI, M. and M.

matrices respectively, for rotationally symmetric electrostatic systems. The functions

magmkc.m, magmnc.m and magmmc.m perform the same functions for magnetostatic

rotationally symmetric systems. The two input parameters for these functions are the

number of nodes on a side of the desired square computational grid and the number of

nodes on the right or left side of the m-th layer of nodes.

As shown in Figure 6, layers of nodes outside the computational grid are defined to

have only three sides for a rotationally symmetric system. Symmetry makes it

unnecessary to calculate the TGT coefficients for the left side of the TGT boundary. For

electrostatic systems, these nodes are known to be at the same potential as their "mirror

images" across the axis of rotation (Neuman boundary condition). The upper left and

lower left nodes on the TGT boundary have the same TGT coefficients as their image

nodes across the axis of rotation. The remaining nodes on the left side of the TGT

25

boundary have the same potential as their images and therefore have a single TGT

coefficient equal to one, which relates them only to their image node on the

computational grid. Figure 8 illustrates these relationships. In this figure, the gray nodes

arc TGT boundary nodes and the black ones belong to the computational grid.

Share Same Coefficients

* 0 0 0 0

One / -"- Axis of Rotation

TGT
Coefficient *

Each

A Share Same Cefflicients

Figure 8. Left Side of TGT Boundary for Electrostatics

For magnetostatic systems, the potentials on the axis of rotation are known to be zero so

the left side of TGT boundary has been placed on the axis and all of the corresponding

coefficients have been set to zero (local Dirichlct boundary condition).

26

Samples of the output of each of these functions and their MATLAB script file listings

are in Appendix B. The samples were generated for the first layer of nodes outside a

three by three node computational grid such as shown in Figure 8. Output from these

functions are m by x matrices (x-,m or n) for which the rows represent the nodes on the

m-th layer and are numbered in a clockwise fashion starting with the node in the upper

left corner of the layer. The columns represent the nodes on the i, m or nth layer and are

numbered in the same manner. As can be seen from the sample outputs for this small

computational grid, the matrices can get to be quite large. Fortunately, they are always

very sparse. Also included in Appendix B are the three functions makeml.m, makemn.m

and makemm.m which generate the M,. M. and M. matrices for z-invariant systems along

with samples of their output. Note that for z-invariant systems, these matrices are not

functions of the inner grid size. The reason for this is that the layers of nodes outside the

computational grid are concentric squares for this coordinate system. For rotationally

symmetric systems, these layers of nodes are rectangular in shape and missing a left side.

Further, it is important to note that there is no need to have different sets of programs to

generate TGT coefficients for z-invariant electrostatic and magnetostatic systems since

the z-invariant Laplace equations for electrostatics and magnetostatics are identical.

The process of solving for the TGT coefficients begins with a vector, Ia>, which

represents the potentials of the nodes on the Dirichlet boundary (layer a) and the node

relationship matrices discussed above for the next layer inward (layer b).

27

The discretized Laplace's equation in matrix form is

EbIb> =B.Ila> +BeIc> (23)

where Ib> and Ic> represent the potentials on the next two layers inward, b and c

respectively. Continuing one layer inward leads to

C, Ic > = Cb Ib > +Cd Id>. (24)

Given that la>-0 for a layer with zero potential, equations (23) and (24) can be

combined and solved to find Ic>, the potentials of the nodes on layer c, in terms of the

nodes on the next layer inward. This solution is given by

Ic> = (Co - Cb (Bb)-' B)- Cd Id> . (25)

Since this solution does not depend on the potentials of nodes on layers a or b, these

layers have been effectively eliminated from the problem. To calculate the TGT

coefficients, this process of layer elimination is continued inward towards the

computational grid. Since the subsequent expressions grow in length with every

elimination, a special "termination" matrix can be defined for each node layer.

28

To simplify notation, define

rFb = Bb (26)

and

rc = Cc - Cb (rb)-' B, (27)

as the termination matrices for layers b and c respectively. [Ref. 2]

In general, the expression which relates the nodes on a layer to the nodes on the next

layer inward is given by

in > = (r.-,' M. In > (28)

where the generic termination matrix, r,,,, can be calculated iteratively by

r,=M -M,(r,)-'L. (29)

When this elimination process is continued inward until the TGT boundary layer is

reached, the TGT coefficients are obtained by

TGT= (r.)-, M.. (30)

29

The MATLAB script files, coefgenc.m and coefmagc.m, used in calculating the TOT

coefficients for rotationally symmetric electrostatic and magnetostatic systems

respectively, can be found in Appendix B. These programs calculate the TGT

coefficients for three sides of the TGT boundary using the algorithm discussed above.

They then add the remaining terms for the fourth side based on symmetry and either

known potentials or known gradients of potential. The last program contained in

Appendix B is the TGT coefficient generating script file for z-invariant systems,

coefgen.m. [Ref. 2]

30

C. CALCULATING THE TGT MATRIX: THE MONTE CARLO METHOD

The Monte Carlo Method (MCM) is a technique used to approximately solve a

mathematical problem through the use of a probabilistic model [Ref. 3: p. 73]. To use

the MCM to solve for TGT coefficients, a MATLAB algorithm was developed to

"relcasc" a fixed number of "random walkers" from a node on the TGT boundary. The

direction in which each of these walkers travel is determined and assigned based on the

outcome of a random number generator and the relationship between nodal potentials

given by the discretized Laplace equation for the appropriate system. For a z-invariant

system, random walkers are assigned an equal 25% probability of going up, down, right

or left. This is because the pitential of a node in the homogeneous sourcc-frec buffer

zone between the computational grid and the defined far Dirichlet boundary is 25% of

the sum of the potentials of each of its four neighbors (above, below, to the right and

left). For rotationally symmetric electrostatic systems, however, the "contributions" of

the right and left neighboring nodes are weighted by the (I 2 (.) and (+ I-I
2r) and (I+

terms of equation (21), repeated below for convenience

4(D=(l 2(I Ir)d),+(l+ I)+0,)r+I+Db . (31)
2(j-) 2()

31

Similarly, the weighting factors for the rotationally symmetric magnetostatic system

come from equation (22), repeated below

[4 - + 1]AC (32)
2(+ i) 2(-)

(I - i 1)At +(1 + l)A, +A, +Ab.

Ar 2r

As can be seen in equation (32), the potential of the center node is also weighted for

magnetostatics.

After every step, each random walker is given a new direction based on a new random

number and the walker's current location. The walkers continue their "journey" until

they land on the computational grid or the distant Dirichlet boundary. If they land on the

Dirichlet boundary, they are eliminated as if to be "nullified" by the zero potential of the

boundary nodes. If they land on the computational grid, a counter which counts the

number of walkers to land on that node is incremented by one and again the walker is

eliminated. Once all of the walkers have been eliminated, the final count of walkers

arriving at each node on the computational grid is divided by the number of walkers

originally released. The end result is a set of coefficients which relate the original walker

release node to each of the nodes on the outside edge of the computational grid. This set

is a row in the TGT matrix. The MATLAB functions which perform this algorithm are

32

contained in Appendix C. The functionfncylwik m is used for rotationally symmetric

electrostatic systems whilefnrctwlk.m is used for z-invariant systems. The programs

cylcoffm and rctcoff.m, also in Appendix C, call these functions once for each node on

the TGT boundary and assemble the data into the TGT matrix for rotationally symmetric

and z-invariant systems respectively. As in the case of the matrix solution method, the

TGT coefficients for the nodes on the left side of the TGT boundary in a rotationally

symmetric system are derived using symmetry. This is done not just to improve

efficiency but out of necessity since a walker on the left edge of the buffer zone is
Ar"

exactly k away from the axis of rotation and by the electrostatic Laplace equation has

zero probability of stepping to the left. Accordingly, no walker can ever land on the left

side of the computational grid and the TGT relationships can only be determined by

using the symmetry of the system. For reasons discussed in the next section, TGT

coefficients for rotationally symmetric magnetostatic systems were not calculated using

the MCM approach, although this could be easily accomplished with only slight

modification to rctcoff.m and fnrctwlk.m.

33

D. COMPARISON OF TGT METHODS

Each of the two methods for calculating TGT coefficients discussed previously have

advantages and disadvantages. The greatest advantage of the Matrix Solution Method is

its accuracy. As discussed in the first section of this chapter, TGT provides the same

accuracy as solving the whole open boundary problem without TGT. This is because the

matrix solution method uses Poisson's equation to solve for the TGT coefficients just as it

would be used to solve the whole open boundary problem. The Monte Carlo Method

(MCM) approach however, is only based on the Poisson equation and will always be

subject to an amount of random "noise". The MCM approach generally makes TGT less

accurate than solving the whole open boundary problem. For this reason, the TGT

coefficients used in EMAG 2.0 were calculated using the matrix solution method.

Insufficient accuracy, however, does not necessarily eliminate the MCM approach

because its accuracy is improved by using a very large number of walkers. This

increases computation time, but parallel processing can be used to recover this time as a

result of the parallel nature of the problem (i.e., the independence of random walk

outcomes for different walkers). Further, the MCM approach has the advantage that it

allows the user to exchange run time for computer memory. The user can release large

sets of walkers a few times to maximize the use of available memory and improve speed

of computation, or the user can choose to release only a very few walkers many times

thereby increasing computation time but using little memory. In this way, the user can

34

select a set of walkers of a size which either maximizes or minimizes the use of memory.

The number of walkers can effectively be increased by running the program a number of

times and averaging the results. In this way, there is no limitation on either the number

of walkers or the distance to the Dirichlet boundary except for the CPU time. This can

be a distinct advantage over the matrix solution method which is primarily limited by the

available memory. The process of layer elimination for the matrix method, requires that

the CPU have enough available memory to invert and store a square matrix with

dimensions equal to the number of nodes on the first layer to be eliminated. Although

sparse matrix tools available in MATLAB help, the inverse of a sparse matrix is

generally not sparse. A memory limitation can only be alleviated by moving the

Dirichlet boundary closer to the computational grid.

35

E. TGT OPTIMIZATION

This section summarizes the research into optimization of TGT. The questions to be

answered concerning optimization are:

1. Given a computational grid size, is there an optimum distance at which to put the

Dirichlet boundary?

2. Using the Monte Carlo Method and the optimum boundary distance from above,

how many random walkers are required to produce accurate TGT coefficients?

3. Given the answers to the first two questions, how do speed of computation and

memory requirements compare between the two TGT methods?

Optimization of TGT begins with answering the first of these questions. This answer

is important because the first step in using TGT is deciding how far away to place the

Dirichlet boundary. The result of this decision controls the speed of calculation and

memory required as well as the accuracy of calculations within the TGT boundary. In

calculating the TGT matrix for use in the original version of EMAG, this decision was

made based on the memory limitations of the computer used to calculate the TGT

coefficients (a HP-700 series UNIX workstation). As the result, the Dirichlet boundary

was established for the "fine" grid to be 803 by 803 nodes or 376 layers away from the

computational grid. In order to maintain the same ratio between the boundary and

computational grid size, the boundary for the "coarse" grid was made 267 by 267 nodes

or 125 layers away from the computational grid [Ref. 1]. The following paragraphs

36

describe the research conducted to determine the optimum boundary location for a given

computational grid. This research was conducted using a z-invariant system since the

z-invariant computational grid has a distant Dirichlet boundary on all four sides and the

layers of nodes in the buffer zone between the boundary and the computational grid arc

concentric squares. However, it has been verified that the results apply to rotationally

symmetric systems as well.

Ideally, if the EMAG computational grid were actually surrounded by free space, the

TGT coefficients relating a node on the TGT boundary to the nodes on the outer edge of

the computational grid would always sum to unity. In the language of the MCM

approach, this is because the walkers would have no outer boundary to land on and

would all eventually land somewhere along the edge of the computational grid. As a

result of this property, a measure of the quality of the TGT matrix can be defined as

QT n q = Ic. (33)

where qis the sum of all the coefficients (c.) relating the i-th node on the TGT boundary

to the nodes on the edge of the computational grid and n is the number of nodes on the

TGT boundary [Ref. 4]. For a computational grid in infinite free space, Q would be

equal to one. Now, if Q was the only factor governing the quality of the TGT

coefficients, the original approach of placing the Dirichlet boundary as far away from the

37

computational grid as possible would be the best solution. However, there is a finite

limit at which the size of the Dirichlet boundary becomes so large in comparison to the

size of the computational grid, that moving the boundary further away yields diminishing

returns. In terms of the MCM approach, this phenomenon can be described as walkers

being more likely to land on a very large but distant Dirichlet boundary than a relatively

small computational grid simply because of the vast difference in their sizes. As a

specific example, an 11 by 11 computational grid would have 40 nodes on its outer edge.

A 21 by 21 node Dirichlet boundary layer would be only five layers away but would

already have 80 nodes or twice as many as are on the edge of the 11 by 11 computational

grid. The size of the Dirichlct boundary grows by eight nodes for every layer it is moved

away from the computational grid.

In order to determine the relationship between the size of the computational grid and

the optimum size of the Dirichlet boundary, the matrix solution algorithms for

calculating TGT coefficients described in section B of this chapter were used. Early

attempts at this involved fixing the computational grid size and moving the Dirichlct

boundary further away one layer at a time while looking for a point at which the relative

change in Q between successive computations was less than 0.1%. During this process,

it was noticed that for a fixed Dirichlet boundary size, choosing successively smaller

computational grids would eventually result in a maximum value for Q after which it

dropped rapidly. This result was contrary to the expectation that more layers of nodes

38

between the boundary and the computational grid would always result in higher Q's.

Through investigation of this phenomenon, it was discovered that for a given Dirichlet

boundary size there is a computational grid size which maximizes Q but that the converse

of this is not true. This observation led to a "reverse" approach of starting with a known

Dirichlct boundary size and searching for the ideal computational grid size. To this end,

a Dirichlct boundary size was chosen and the row elimination process involved in

calculating the TGT coefficients begun. As each row was eliminated, a new set of TGT

coefficients was generated as if the desired TGT boundary had been reached. The Q

factor for this set of TGT coefficients was then calculated and stored. This process was

continued until the inner-most layer was reached (a 3 by 3 layer of nodes). The stored

values for Q were then plotted versus the dimension of the layer at which they were

calculated. The resulting curve represented the Q factor trend for a fixed Dirichlet

boundary size as the computational grid was decreased in size. The Q curves resulting

from using Dirichlet boundary sizes of 51 by 51, 101 by 101,151 by 151 and 201 by

201 are shown in Figure 9.

39

09 \181XX151

1X6106 f'-,\oxo

075
07 I --06 'L'

50 100 1so 200TGT Soundwy $a*

Figure 9. BoundTuy Curves: Q-Factor Trend

The starred points on each of the curves in Figure 9 represent the TGT boundary size

(and therefore the computational grid size) which corresponds to the maximum value of

Q. These curves illustrate that although moving the boundary further away will always

increase the Q for a fixed computational grid size, this computational grid size will

eventually fall on the left hand side of the boundary curve where Q drops off. Choosing

computational grid sizes which correspond to the maxima on each of these curves results

in a set of TGT coefficients that most effectively match the resolution of the grid. To put

it another way, although moving the Dirichlet boundary further away always improves

40

the TGT coefficients, there is a point at which the resolution of the grid becomes the

limiting factor in solution accuracy and improving TGT is no longer beneficial.

To determine the function which relates the optimum computational grid size to the

Dirichlet boundary size, boundary curves were generated for 95 Dirichlet boundary sizes

ranging from 11 by 11 to 201 by 201. The resulting computational grid sizes were

plotted against their corresponding boundary sizes as shown in Figure 10.

260

IS

iso

0 0 t20 3'0 40 5s0 6 70
Computsbonal Grid Dm•mon

Figure 10. Boundary to Grid Size Relationship

Figure 10 shows that there is a linear relationship between the Dirichlct boundary size

and the corresponding optimum computational grid. Figure I I is a plot of the ratios of

the sizes of the data pairs plotted in Figure 10.

41

SI,

32

0 2o 40 OD 100

Figure 11. Convergence of Data

Figure 11 shows that the ratio of Dirichlet boundary size to computational grid size

converges to a value of 2.879. As a result, the Dirichlet boundary size to be used with a

given computational grid can be calculated directly by multiplying the desired grid size

by 2.879 and then rounding to the nearest odd integer if the computational grid is of odd

dimension or to the nearest even integer if it is of even dimension.

Once the relationship between the boundary and the computational grid sizes was

determined, the number of MCM random walkers required to accurately solve the TGT

problem could be evaluated. To accomplish this, sets of TGT coefficients were

42

generated using varying numbers of walkers for a fixed computational grid size and a

distant Dirichlet boundary established from the condition given above. These TGT

coefficients were then compared to the matrix method TGT coefficients to determine a

term-by-term error, et, given by

S* =St-Sk (34)

where Sk is the k-th, matrix method TGT coefficient and s-k is the k-th coefficient

generated by the MCM approach. A root-mean-square (RMS) error was then

determined for the MCM coefficients by

Errorpws = N (35)

where N is the number of coefficients in the set. This result was then used to form an

error-to-data ratio by using an RMS measure of the matrix solution TGT coefficient set

given by

Datapus Dk), 36
Dt = (36)

43

and the relationship

-ff27P 20 log (r7r . (37)
"Dataa

Using this measure of accuracy, data was collected over a wide range of numbers of

walkers. The results of many equal-sized sets of walkers were then used to produce a

mean value and standard deviation for the error between trials associated with using a

particular number of walkers. The lower curve in Figure 12 depicts the mean

error-to-data ratio for sets of MCM walkers using an I I x 11 computational grid. Curves

for one and three standard deviations above the mean are also shown.

Aamireay otMcM Ar I 'lxi1 Compumoub Gtid

-t5

-20

1-25

- \5 + 3a
1=40 ,..-..m""•

.45

-560 L/ '-- . ..

" o.S5 I Is 2
Wrber ol Fbndom Wakets x Ids

Sx 1

Figure 12. Error vs. Number of Walkers

44

The Central Limit Theorem states that the sum of many statistically independent random

variables approaches a Gaussian random variable. The number of walkers that will yield

a set of TGT coefficients with a given decibel error 99.7% (m+3a) of the time, can

therefore be chosen by using the upper standard deviation line in Figure 12 [Ref. 5:

pp. 425-430]. To achieve -40dB error with this level of success for an II x II

computational grid would require approximately 1.5 x 10' walkers. To achieve this

same error level but with 68.3% reliability, the lower standard deviation line (m+o)

indicates that only about 5 x 104 walkers would be required. This type of analysis has

been conducted for grid sizes smaller and larger than 11 x I I and it has been observed

that the required number of walkers actually diminishes slightly with increasing grid size

(at least up to 51 x 51, the size of EMAG's "fine" grid). This is due to the fact that for

larger computational grids a greater number of the TGT coefficients are very small and

contribute little to the RMS values for the data and error. An approximation for the m+o

curve is given by the equation:

x
(Error)d =40e 106 -80 (38)

where x is the number of walkers released from each node on the TGT boundary. This

approximation is only valid for numbers of walkers greater than about 50,000 but gives

an indication of how many walkers would be required to achieve accuracies greater than

45

shown in Figure 12. Using this approximation, about 700,000 walkers would be required

to achieve a -60 dB error to data ratio with 68.3 % reliability.

With the first two optimization questions answered, the computational speed and

memory requirements for the two TGT coefficient generation methods were compared

This comparison was made by calculating a set of TGT coefficients for EMAGs "coarse"

and 'fine" computational grid sizes. The number of MCM walkers was chosen to

provide a -40dB error at a 68.3% level of reliability (mreý). Table I contains the results

of this comparison. The computational times were obtained by calculating TGT

coefficients on an IBM compatible 486 class PC. The memory requirements are

estimates based only on the sizes of the matrices stored by each coefficient generating

program and do not account for any of the MATLAB overhead memory needed for the

inversion of the sparse matrices, etc.

TABLE 1: COMPARISON OF TGT METHODS

17 x 17 51 x 51

Memory (KB) Time (sec) Memory (KB) Time (sec)

Matrix 271 100 2,700 6,520
Method
MCM with 400 29,700 400 217,000
5x1 04 Walkers

46

,I

As can be seen in Table 1, the matrix solution method is considerably faster than the

MCM approach. It should also be noted however, that the memory requirements of the

MCM approach do not change with increasing grid size while the memory requirements

for the matrix solution method grow rapidly. Furthermore, although computational times

for the matrix method are much shorter than the MCM times, they also grow at a much

faster rate than the MCM times. Finally, it needs to be noted that the MCM coefficient

generating algorithm used here does not take advantage of the symmetry of the system.

For z-invariant systems, one could calculate TGT coefficients for one-eighth of the nodes

on the TGT boundary and then use symmetry to completely fill the TGT matrix. Such an

approach would theoretically cut the MCM times by a factor of eight. Similarly, the

rotationally symmetric MCM coefficient generation time can be reduced, but only by a

factor of two. Furthermore, only three-quarters as many coefficients need to be

generated using MCM for a rotationally symmetric system (the left side coefficients are

already obtained by using the symmetry about the axis of rotation) resulting in a

computational time of about three-eighths of the value listed in the table.

As shown in this section, there is a choice of method by which the TGT boundary

matrix can be calculated. Although the matrix solution method is the most desirable

approach when using sequential computers to calculate TGT coefficients for EMAG's

current computational grid sizes, the MCM approach can take advantage of parallel

processing capabilities. This is because the paths taken by the individual walkers are

47

statistically independent. The same statistical independence holds even for consecutive

steps taken by a single walker. Using a parallel MCM algorithm, a massively parallel

computer (1024 processors, for example) could easily be more efficient in calculating

TGT coefficients than it would be if it used the matrix solution approach. Further, thr.

MCM approach does provide an effective albeit slow alternative if memory is a limiting

factor even on a sequential processing computer. Another important point is that the

MCM approach if very intuitive. It has served as a valuable tool in analyzing the

generation of the TGT matrix. Finally, using two completely different methods for

calculating the same set of coefficients proved to be a tremendous asset in the

development and testing of the TGT algorithms contained in the appendices.

48

IV. EMAG 2.0 EXAMPLES

This chapter presents two examples of EMAG 2.0's solution of rotationally symmetric

problems. These particular problems have been chosen because analytic solutions exist

and can be compared with EMAG's reisults. The first example is a problem in

electrostatics: the calculation of the capacitance of a cylindrical capacitor. The second

example is a magnetostatics problem which involves calculating the magnetic field on t1-

axis of a current carrying circular loop.

49

A. CYLINDRICAL CAPACITOR

The objective of this example is to calculate the capacitance of a cylindrical capacitor

as shown in Figure 13. This capacitor has length L - I cm, an inner conductor radius

a = 0.2 cm, a variable outer conductor radius b, and a polyethylene dielectric separating

the two conductors having a relative permittivity s, - 2.3.

Inner Conductor

Outer Conductor

.e L

Dielectric, r, - 2.3

Figure 13. Cylindrical Capacitor

To calculate the capacitance using EMAG 2.0, the capacitor was modeled as shown in

Figure 14. EMAG's "enclosed charge" utility was then used to determine the charge on

the outer conductor and the result was divided by the known potential difference between

the conductors (V*,W - V =, -- 1 volt) to find the capacitance.

50

Inner Conductor (Vinw = 0)

0010

oo,, --'--Lfelectrkc i(e, =..3).

00ii

L

Outer Conductor (V ter = 1 P)

0.005 0.01 0.015 0.02

a

Figure 14. Cylindrical Capacitor

Although Figure 14 depicts a cylindrical capacitor with an outer conductor radius

b = 0.4 cm, Table 2 presents the results for four capacitors with various outer conductor

radii. The relationship used to calculate the theoretical capacitance is

Cno ...rtka 2- ,eL (39)
In (b

The derivation of this equation uses Gauss' Law, the definitions of capacitance and

potential, and assumes that the fringing effects near the ends of the capacitor do not

51

contribute to the net capacitance (Ref. 6: p. 125]. Since these end effects are only

negligible when the separation between the conductors is small compared to the length of

the capacitor, the EMAG and theoretical capacitances converge only for long, thin

capacitors. However, end effects cannot be neglected for capacitors in which the length

is not much greater than the conductor separation, and equation (39) is no longer valid.

In this situation, equation (39) can serve only as a lower bound for the actual capacitance.

Table 2 presents the capacitances calculated using EMAG and equation (39), the ratio of

these two values and the separation to length ratio, (b-a)/L, for the four cylindrical

capacitors modeled on EMAG's "fine" computational grid.

TABLE 2: CYLINDRICAL CAPACITOR

b (cm) CEMG (pF) C (pF) , /CE•.G (b-a)/L

0.257 5.202 5.103 0.981 0.057

0.300 3.219 3.156 0.980 0.100

0.333 2.842 2.509 0.883 0.133

0.400 2.433 1.990 0.822 0.200

52

B. MAGNETIC FIELD ALONG AXIS OF A CIRCULAR CURRENT LOOP

This example demonstrates the accuracy of EMAG's coarse and fine grid solvers in

calculating the magnetic field along the axis of a current carrying loop. The problem to

be modeled is shown in Figure 15.

R-1 mee Ar

I Am

Figure 15. Current Carrying Loop

This problem was modeled in EMAG as a "point" current source on the rotationally

symmetric computational grid. The "point" represented the cross-section of a loop of

current perpendicular to the z-axis. This current was set to 1 Amp. Once this was done,

the magnetic field values corresponding to the nodes on the axis of rotation were

53

extracted from the magnetic field matrix generated by EMAG. The coarse grid model

and the equi-potential contour lines generated by EMAG are shown in Figure 16.

Cross Section of Loop

..- •. - "

X-.-

.............--- --- --.....- " " '. " • • ', ," '.... ...

x-y. .. .\ V • :'" 'j

P 00ne L -- ,-- III

P onc I , . . J.I
Or-- I Ii

1 . 1 .5

r=im

Figure 16. Equal Potential Contours for Current Loop

The fine and coarse grid solutions are plotted in Figure 17 along with the theoretical

field strength given by

-+ JR2
--

H - 2(r2 +R 2)3/ Ti- (40)

54

which was obtained by dividing the theoretical magnetic flux density by the permeability

of free space [Ref. 6: p. 238].

Of
05•

0o6 Ai N
045

035
0 - Theoretical

025 Fine Gid
02+ Coarse lid

-1 05 0 05
z (mohs)

Figure 17. Magnetic Field Along Axis of Loop

As can be seen in Figure 17, EMAG's solutions are nearly identical to the theoretical

solution. Not only does this example demonstrate EMAI's accuracy, but it also shows

how information can be extracted from EMAG to extend the analysis of a given problem.

In this case, the column of data in each of the magnetic field matrices, hr.fine and

hf coarse, which corresponded to the axis of rotation was copied and plotted against the

theoretical solution.

55

V. CONCLUSIONS

The enhancement of EMAG described in this thesis involved solving two relatd but

separate problems. The first was the generation of finite difference equations for

rotationally symmetric electrostatic and magnetostatic systems. The second was the

application of these equations in implementing a boundary to accurately simulate infinite

free space. In solving the first problem it was found that for rotationally symmetric

systems, the discrete Poison equations for electrostatics and magnetostatics are different

due to the directional properties of the magnetic vector potential. For z-invariant systems

these directional properties can be ignored (because the magnetic vector potential and

the current sources arc in the z direction). As a result, z-invariant electrostatic and

magnetostatic systems can share the same discretized Poisson equation. This is not the

case for rotationally symmetric systems. Even if the sources are defined to be

exclusively in the 0 direction as they are in EMAG 2.0, the directional properties of

magnetic vector potential cannot be ignored. The curl operation relating the magnetic

field to the magnetic vector potential causes the resulting discrete Poisson equation for

magnetostatics to be different than the electrostatic equation developed using the

relationship between the electric field and the electric scalar potential which involves a

gradient operation.

56

Once these equations were developed, :/were integrated into EMAG and used to

calculate boundary relationships based on the concept of TGT. During the course of this

work, two different methods were used to calculate the TGT coefficients. Both methods

use discretized Poisson equations for a homogeneous, source-free region. Although both

approaches create nearly identical sets of TGT coefficients, each have their strengths and

weaknesses. The matrix solution approach is more accurate. Using TGT coefficients

generated from the matrix approach allows one to solve a problem on a fixed

computational grid with the same accuracy as solving a much larger system extending all

of the way out to the distant DirichIet boundary (used to generate the TGT coefficients).

The matrix approach was used to determine an optimal relationship be"..-cn the

computational grid size and the size of the distant Dirichlet boundary. This could not

have been easily done using the MCM approach because its results are a function of an

additional variable: the number of walkers released from each of the TGT nodes. The

matrix approach is also the faster of the two approaches, but this would not be the case if

a parallel processing computer were used. The major disadvantage of the matrix solution

approach is its memory requirement.

The second method for generating TGT coefficients, the MCM approach, uses a

probabilistic model in the generation of the TGT coefficients. It can only approach the

accuracy of the matrix method when the number of random walkers becomes very large

and, on sequential computers, it is also very slow. An extLnsive parallel processing

57

capability however, could make the MCM approach faster than the matrix approach and

therefore, more desirable. The other advantages of the MCM approach are its smaller

memory requirements and its intuitive nature.

The end result of above research is a more capable version of EMAG. With its

enhancements for rotational symmetry, EMAG can solve a wider set of problems. With

the inclusion of TGT generating algorithms, it is possible to modify the program to solve

problems on computational grid sizes of the user's choice. The possibilities for future

improvements are numerous. They include the cnhanccnnt of the graphical user

interface, and the addition of the capability to solve time varying problems.

58

APPENDIX A
EMAG 2.0 LIST OF PROGRAMS

Below is a directory of the files which make up EMAG 2.0. The italicized files are the
MATLAB script files which were modified to incorporate rotational symmetry. The
following pages contain the complete code listings for these modified files. Code listings
for the unmodified files are found in Reference 1.

ccontour.m helppec-m pecline3.m
cefieldm helppost.mn pecpnt.m
chargsrc.m helpsolv.m pecreg-rn
checkchr.m helpsrc.m permat.m
coarsegd.m i -calcm plotc.m
connecto.m in267 -17.tgt source2.zn
cy267_17.tgt in803-51.tgt table2.m
cy803_5 I .tgt itersolnm plotp.m
cymagl17.tgt linterp.m plotq.m
cyniag_51I.tgt looktab.m posterro.rn
dielcolo.m makess2.m postproc.m
emag.m maicesysf.m printplo.m
epscell.m matsolve.m q~calcm
epsreg.m matsolvfm redraw2.m
fcontour.m plotd.m rprint.m
fefi eId.m plotm.m saveplot.m
fileopt.m mousetst.m solndom.m
find2rc.m myquiver.m solver.m
geosetup.m nodes.m table_-2.m
hardcop.m numpec.m thresh.m
helpemag.m outline2.rn toggle.m
helpfopt.m outn51. dat uavg.m
helpgeo.m pec.m voltsrc.m
helpmed.m peccell.m xygrido.m

59

%%0/ cefield.m: Plots either the E-Field or the H-Field depending on the value %
%%of the EM flag, the field vectors can be plotted with the %
0/00/0 geometry of the problem, and the vectors magnitudes can be %
0/00/0 "thresholded", or scaled to minimum size as expressed as a %
%% percentage of the maximum field. The field vectors plotted are %
%% ~a result of the coarse grid solution.%
%% ~(See thresh.m for more info on threshold)%

%% ~This program has been modified for rotational symmetry. %
%% Magnetic fields are explicitly calculated for rot sym systems. %
%% dpw 9505 15%

%0/00/0%000/00 0%%%%%%%%%%%%%00/%%%%%%%%%%%%%%%%%%%0/0/0000/

eo-l=pi*4e-7;

geo-on-screen=0;,

with~geometry=input('Outline the geometry [y]: ','s');

if strcmp(with~geometry,[]), with~geometry'y'; end

if withgBeometry=='y',

geom type'c;,

outline2
hold on

else

xygrido(xmin,xmax,ymin,ymaxN-coarse,N-coarse)
hold on

end

ef coarse=gradient(-v_mati,dx-coarse/3,dycoarse/3);

if EM-flag--'M'
uavg

end

60

if (cyflfagm=C)&(EMfjlag-VM)
rmat -rowc=O:(length(v _mati)- I);
rniat-row-rmat rowc~dx-coarse*(1/3);
rmatc--nuat-rowc;
numrows1-;
while numrows<length(vmnati)

nnatc[rmiatc;nnat-rowcJ;
numrows=numrows+1;

end
h-termicgradient((v inati. rmkatc),dx-coarse/3,dy~coarse/3);
h-termc(:,2:lengtb(hternc))=h~termc(:,2:length(htýemc))./..

(rmatc(:,2:length(hýermc)));
h-termc(lI:length(h termc), I)=h .termc(I:Iength(h~termc),2)..

*(I+(4/3)*clx-coarse/3);

j=sqrt(- 1);
hf coarse=(- 1)*imag(ef coarse)+(lj)*real(hjtermc);
hi'_coarse~hf coarse.I(eo_I *u,_avgpmatrix);
clear rniatc

end

with-thresh=input('Set threshold for the vectors [n]: ','s');

if strcmp(with-thresh,Ij), with-thresh='n'; end

if with-thresh=='y',

hold on

if EM-flag='M',

if cyl~flag--'C'
[xx,yy]=-thesh((-I)*imag(ef coarse) .I(u_avg_matrix~eo_1),

real(h~termc) ./(u avg matrix*eo I));
else
[yy,xx]=-thresh(real(ef coarse) .Iu_a4vg_mnatrix *eoI,

imag(ef coarse) .Iu, avg matrix *eo 1);

end
else

[xx,yy]--thresh(real(ef coarse),-imag(ef coarse));

61

end

myquiver(xx~yy,xmax,ymax,'r-');

else

if EM_flag=¶M',

if cyLflag=-C
myquiver((- I)*imag(ef coarse) ./(u avgnmatrix*eo 1),

real(h~tennc) ./(u~avg~matix~eoI),xmax~ymax,'r-');

else
myquiver(imag(ef coarse) ./u avg_matrix *eo_1,

real(ef coarse) ./u _avgmatrix *eo_1 ,xmax~ymax,'r-');
end

else

myquiver(real(ef coarse),-imag(ef coarse),xmax,ymax,'r-');

end

end

hold off

%%%%%%%*/O/O/O/%%%%%%%%%%%%%%%%%%%%oOocoO/O/O/O/O/O/ end of cefield.m

62

%%O/ fefield. m: Plots either the E-Fie J or the H-Field depending on the value %
0/0/0 of the EM flag, the field vectors can be plotted with the %
%% geometry of the problem, and the vectors magnitudes can be %
0/0/0 "thresholded" or scaled to minimum size as expressed by a %
%% percentage of the maximum field. The field vectors plotted are %
%% a result of the fine grid solution. See thresh.m for more info %

0/00/0 This file has been modified to explicitly calculate H-field %
%% ~for rotationally symmetric magnetostatic systems.%
%% dpw 9405 15%

eo-lrpi*4e-7;
geo_on-screen=O;

with~geometry--input('Outline the geometry [y]:',s)

if strcmp(with~geometry, []), with~geometry='y'; end

if with~geometry-='y',

geom -type=f';
outline2
hold on

else

xygrido(xmin,xmax,ymin,ymaxN-fineN fine)
hold on

end

ef fine--gradient(-v~source-mat,dx,dy); % (-d V/dx)+j(-d V/dy) z-invar
O/ (-dV/dr)+j(-dV/dz) rot sym

63

if EM-flag'M'-,N
uavg

end

if (cyiflag-'C')&(EMflag==M)

nnat row=O:QIength(v source mat)- 1);
rmat~row=(rmat,.row)*dx; % dx--dr
rmat=rmat -row;
numrows= 1;
while numrows<length(v source-nmat)

rmat=[rmat;rmat-row];
numrows-numrows+ I;

end
h-term=gradient((vjsource-mat. *rmnat),dx~dy);

% h-term=(d(rA)/dr)+j(d(rA)/dz)

h-term(:,2 :length(h .term))=h ~termn(:,2:length(h ,_term))./..
(rmat(:,2:length(h,_term)));

% h term=(I/r)* [(d(rA)/dr)+j(d(rA)/dz)]

h-term(I:length(h term), I)=h tenn(lI:length(h~term),2)*(I +(4/3)* dx);
% 2.3 33 (1+4/3) term is from coefficient
% for values dx from axis
% This approach avoids division by zero with accurate results.

j=sqrt(- 1);
hf fine=(- 1)*imag(ef fine)+(Ij)*real(h_term); % mag flux density

%-I is due to the fact that
% MATLAB is taking gradient in -z direction

hf finehf fine./(eoI *uj_avg matrix); % hi'_fine is now magnetic field matrix
clear rmat

end
w~ith-thresh=input('Set threshold for the vectors [n]: '')

if strcmp(with-thresh,[]), with thresh='n'; end

if with-thresh=='y',

hold on

if EM-flag=='M',

64

if cyiflag==~'C'
[xx..yy]=thresh((- I)*imag(ef fine) ./u,_avg~matrix,

real(h term) ./u avg marix);

else
[yy,xx]--thresh(real(ef~fine) .Iu,_avgmatrix,

imnag(ef fine) ./u..av-matrix);
end

else

[xx,yy]--thresb(real(e~ffne),-imag(ef~fine));

end

myquiver(xx,yy,xmax,ymax,'r-');

else

if EM-fiag=='M',

if cyl-fiag=='C'
myquiver((- 1)*imag(ef fine) ./u a4vg matrix,

real(h term) ./u avg matrixxmax,ymax,'r-');

else
myquiver(imag(ef fine) ./u avg matnix,

real(ef fine) ./u avg matrix,xmaxymax,'r-');
end

else

myquiver(real(effine),-imag(ef fine),xmax~ymax,'r-');

end
end

hold off

%%%%%0/0/0/%%%%%%%%0/0/0/0/%%%%%%%%%%%%%%PoO/O/O/O/ end of fefield.m

65

%%/00/%%%%%%%%%%%%%%%%% %%%%/0/0000/0/00/%%%%%%%%%%o/%%%%Oo/%

0%0% %

%% i calc.m: Function to perform a closed line integral of the H-Field along %
%% the rectangular contour shown below. %

Yo% USAGE: [I]=i_calc(Aznu,dxdy) where: Az is the Magnetic vector potential %
0%0 nu is 1/relative permeability %
00% o< ---(xl,yl) --------- o dx and dy are the grid spacing %
%% IUl1ll1l-ll-lI/_lJii l %
%% 1_1__Il_Current_l_lj_l_ii Az: (MxN) matrix Units: Wb/m %
0%00%0 ._lenclosedlClii_l nu: (M-I)x(N-1) matrix Units: none %
%% IIIIIIlllllll dxanddy:scalar Units: m %
%% o ------- (x2,y2)--->o I: scalar Units: A/m %

%% When the function is called, the user will use the crosshairs to indicate %
%% the positions of two opposite corners. The function will return the %
%% amount of current enclosed or 'error' if the user has entered the corners %
%% outside of the region where Az exists or the closed contour contains no %
%% area. (i.e. the two corners are do not specify a box) %

%% This file has been modified for rot sym systems. dpw 950515 %

% 00000000/00/0000 %0000/00/00/000/0/0000/00000/0% % %00000%000/000

function [i]=i calc(An,dx,dy);

load mouse.emg -mat;

global cyl flag

disp(")
disp('1. Press the left button for one corner of the box')
disp('2. Press the left button again for the other corner')
disp('3. Press the right button when you are done')
disp(")
disp('If you press the right button immediately after choosing this option')
disp('it will take you back to the previous screen.')
disp(")

disp('Press any key to continue...')
pause

66

%plot;
[xx~yy,button]=ginput(1);

Lower=O;
blflagrO;
b2flag-O;

while button-=Right__Button I b Iflag==O Ib2flag=O,

if button--LeftButton & Lower===O,
blIflag= I;
x(I)=xx;
y(l)=yy;
Lower--I;

elseif button=-Left Button & Lower-= 1,
b2flag=I;
x(2)=xx;
y(2y=yy;
Lower=-O;

end

[xx,yy,button]=ginput(1),

end

x--round(xldx);
y=round(y/dy);
[r,cl~size(A);

if sum(x<O)==O & sum(y<O)==O & abs(x(lI)-x(2))> 1 & abs(y(lI)-y(2))> I &
sum(x>c)==O & sum(y>r)==O,

uo~pi*4e-7;

if x(I)>x(2), x--[x(2) x(l)]; end
if y(1)czy(2), y=[y(2) y(I)]; end

toprow = r-y(1); bottomrow = r-y(2)- I
Ieftcol = x(I)+ 1; rightcol = x(2);

for col=Ieftcol+I :rightcol

67

nfrý_top = 0.5*(n(toprow,col-1) + n(toprow~col));
nir-bottom = 0.5*(n(bottomirow,col-1) + n(bottomrow,col));

i=i+ fir top (A(toprow+1I,col) - A(toprow,col)) +.
nir-bottom *(A(bottomrow,col) - A(bottomrow+l,col));

end

for row--toprow+1 :bottomrow

ntb-left =0.5*(n(row-l,leftcol) + n(row~leftcol));
ntb-right =0.5 *(n(row-lI,rightcol) + n(row,nightcol));

if cyLflag=='C'
= i + ntb -left * (1/(leftcol-0.5))

((leftcol)*A(row,leftcol+lI)-(leftcol- 1)*A(row,leftcol))..
+ ntb -right * (I/(rightcol-0.5)) *..

((rightcol- 1)*A(row,rightcol)4(rightcol)*A(row,rightcol+lI));

else
i i + ntb -left *(A(row,leftcol+l) - A(row~leftcol)) +..

ntb right *(A(row,rightcol) - A(row,rightcol+ 1));
end

end

i-iduo;

x(2)=(x(2)-0. 5)*dx;

y(2)=(y(2)+O. 5)*dy;
hold on
plot([x(l) x(2) x(2) x(1) x(l)],[y(I) y(I) y(2) y(2) y(l)],'cl-')
hold off

else

end

%%%%%oPo/o/%%%%%%%%%%%%%%%%%oOoO/O/O/O/O/ end of i-calc.m

0/%/ itersoln.m: Used to solve Poisson's equation for E-Statics and M-Statics %
%% ~The equations are formulated using standard Finite Differences%/
%% and the solution algorithm is a essentially Jacobi's Method %
0/00/0 with or without a approximate starting solution.%

%% This program has been modified from its original version %
%% to solve both z-invariant and rotationally symmetric systems %

%% Modified 940514 dpw

%%%%%%0/%0/0 %%%%%%%%%%%0/00/%0%0%% 0%000%0%%%0%0%0%%%0%0/%%%%%

if EM -flag=='M',
prefix-'.im';
hold-er-er -matrix;
er -matrix- I ./er-matrix;
eo_.1=pi*4e-7;

else
prefix='.ie';
eo_-1=1/8.854e-12;

end

float -nodes=[];
num -fnodes=0;
nodes-around jpec=i 1;
er-aroundjpec=[];,
num -rnodes=O;
col -index=0O
obj -index-O;
charge obj=[];
disp('')
disp('Input the %-error you wish to stop at and specify the maximum number')
disp('of iterations.')
disp('When either of these two criteria is satisfied, the program stops')
disp('')
TOL=input('Input the error t(ierance (in percent) [I]:')
if strcmp(TOL,[]), TOLI;L end
TOL=TOL/ 10;
disp('')

69

MAXITER-inputClnput the maximum number of iterations [1000]:')
if strcmp(MA)UTER,[]), MAXITER=1000; end
MAXITER~round(MAXITER/I 00)*1I00;

% First, i need to know where all the nodes around all the floating PEC/PMR %
% objects are ... %

v-source-mat=9999*ones(ycells+ I,xcells+ 1),

N=N-fine;
ltable~looktab(N);

disp(")
dispC'Setting up iterative solver variables. .')

pntr--find(Itable-=0);

v-source-mat(pntr)=v~source(ltable(pntr));

v-source-mat=reshape(v source mat,ycells+ 1 ,xcells+ 1);

for i= 1:max(max(v source-mat))- 10003

fprintf('\nrocessing object #0/og - nodes: i

ptsobj-ifind(v.source-mat=- 1 0003 +i);

[row-size~col-size]=size(pts_obj_i);

if row-size-=0 & col-size-=0,

obj-index--obj-index+ 1;

col-index--col-index+ I;

float-nodes(1 :row-size~col index)=pts_obj_i;
num-fiiodes(col index)=row_size;

row-index=1l;

70

num-nodes(obj-index)=O;

forj1l:row-size

fprintfC'Oog 'j)

c_row-rem(pts _obj (j),ycells+ I),
c_coI=ceiI(pts ob iojg(xceiJs+ I));
t-row-c-row-I; t_col~c -col;
b -row--c-row+ 1 b-col=c_cal;
1_rowr-c-row; I -col=c-cal-i1;
r-row-c-row; r-col=c-col+1;

% look up to see if there is no PEC/PMR

if v-source-mat(t-row,t-col)--9999,

nodes -aroundjpec(row-indexcol index)~=(t_col-i)*(ycells+lI)+t row;
er-aroundjpec(row-index,col-inde4)(ermnatrix(cjow- 1 c-col- 1)+

er__matrix(c row-lI,c-cal))/2;
num -nodes(objjindex)=numjinodes(obj-index)+ 1;
row -index-row-index+ 1;

end

% look left to see if there is no PECIPMR

if v-source-mat(l-row~lcol)=9999,

nodes -aroundjpec(row-index,col-index)=(l col-lI)*(ycells+l1)+l-row;
er-aroundjpec(row index,cal-index)=(er-matrix(c_row-1,c-col- I)+

er_matrix(c row,c _col-1I))/2;
num -nodes(obj -index)=num-nodes(objindex)+ I;
row -index--row-index+ I;

end

% look right to see if there is no PECIPMR
if v-source-mat(rrow,r~cal)--9999,

nodes-aroundjpec(row-index,cal-index)-(rcal-l1)*(ycells+lI)+r-row;
er-aroundjpec(rowjindex cal-index)=(erjiiatrix(cý-row-I,c-cOl)+

er matrix(i;row,qccol))/2;
num-nodes(obj index)=num-nodes(o'bjjndex)+ I;

71

row -index-row index+ 1;

end

% look down to see if there is no PEC/PMR

if v-source-mat(b row,b-col)=--9999,

nodes around jpec(row index~col index)=(b cqol-l1)*(ycells+l1)+b row;
er-around~pec(row-index, col index)=(er-matrix(c_row~c-col- I)+

er_matrix(c row,c_col))/2;
num -nodes(obj index)=num iodes(obj index)+ I;
row -index--row-index+ 1;

end

end

fprintf(W\)

end

end

% calculate the total charge/current for each PEC/PMR object

for i= I:obj-index
chargeý obji=uchge.afla noes(lI:num ffhodes(i),i)));
charge _mat(float nodes(l1:num-fnodes(i),i))=zeros(l1,num-fnodes(i));
disp('')
disp(['Charge for object #',int2str(i),': ',num2str(charge obj(i)),' C/rn'])
disp(")

end

charge obJ~charge obJ*eo_1;

% Set up pointers to the middle and outer layers%

if cyl fla 'C
if EM_flag=?A'

load cymag_5 I .tgt -mat % coefficients for mag rot sym
else

72

load cyS03_5 1 .tgt -mat % coefficients for elect rot sym
end

else
load in803_51 .tgt -mat % coefficients for z-invaniance

end
N=N fine+1;
xmat--table_2(N);

%clear middle~pts outer~pts

dispf-)
disp('Initializing pointers to the outer and middle layers')

if exist('outN5 1 .dat')--=2,
for i=1 :2*(xcells+ycells)

outerjpts(i)--find(xmnat~i);
end
save outN5 1. .dat outerjpts

else
load outN5 1. .dat -mat

end
if exist('midN5 I .dat')-=2,

for i=2*(xcells+ycells)+ 1:2 *(xce1Is+yce1Js)+2*(xce11s-2+ycells-2)
middlejnts(i- 1 20)=find(xmat--i);

end
save middS L dat middlejpts

else
load midN5 1. .dat -mat

end

disp(")
disp('Set source pointers and media pointers')

source...pts--find(v source mat@9999);

v-known=v-source-mat(source~pts);

diel~pts-flnd(v source-mat>=9999);
[drow,dcol]=size(diel~pts);
v-source-mat(diel~pts)--zeros(l,drow);

try again--'y';
load-success=~O;

73

suffix=,x';

igjloadecfr'n;

% to load or not load an initial solution

initjguess-input('Do you wish to use an initial guess? [y]: ','s!);
if strcmp(init...guess,[]), init~guess='y'; end

if init-guess-'y',

if exiSt('vmat'>1,
disp(")
igloaded-input('Use current coarse grid solution? [y]: ','s');
if strcmp(ig loaded,[]), ig loaded='Y; end

end

if igloadedý'y',

v-source-mat~linterp(v mat);

else

while try_ again~=='y',
disp(")
disp(' Enter the file which contains the initial guess:)
fhame~input('with no file extension: ',*s');
while suffix-='c& suffix-'f,

disp('')
disp('Is the data from a coarse or fine grid solution?')

suffix--input('Enter c or f. ','s');
end

if exist([fimmne,prefix~suffix])--2,
eval(['load ',fiiame~prefixsuffix,' -mat']);
try again=Wn;
load -success--1;

else
disp(")

disp([bell,fniame,prefix,suffix,
'does not exist in the current directory!'])

suffix='x';
tryagain=input('Do you wish to try again? [y]: ','s');
if strcnlp(tryagain,[]), tryagain'y'; end

74

end

end

if load-success= 1 & sufflx='=c-,
v-source-mat=linterp(v _mat);

elseif load-success==O,
disp(")

disp([bell,'An initial guess of all zeros will be used',
'(except known potentials)!']);

v-source mat--zeros(N-fine+1,N-fine+ 1);
v-source miat(sourcejpts)=v known,

end

end

else
disp('')
disp([bell,'An initial guess of zeros will be used',

'(except known potentials)!'])
v-source-mat=zeros(N fine+1,N-fine+ 1);
v-source._mat(sourcejnts)-v known;

end

mesh (flipud(v_source-mat))

disp(")
disp('Averaging media properties')

r--(2:ycells)';
c--(2:xcells)';

rt=r-1;
rb=r+ 1;
cl=c- 1;
cr--c+ 1;

if cyLflag-='C' % rotational symmetry
cols=1 :lengtb(c);

75

for k- I: length(r)
cc=-[cc~cols];

end
if EMl_flag=-'NT

erl(r,c)=ermatrix(r-lI,c-l1)+er matnix(r,c- 1)). *(1-(2*cc- I).(- 1));
err(r,c)-=(ermatrix(r- 1 ,c)+er matrix(r,c)). *(I +(2*cc+ I).AN-));

ert(r,c)=erMatrix(r- 1 ,c- I)+er _matrix(r- I ,c);
erb(r,c)=er~matrix(r,c- I)+er,_matrix(r,c);
erc(r,c)=2 *(er-matrix(r- I ,c- 1)..

+2*(er~matrix(r-I1,c) ..
+er-matrix(r~c)). *(I -(I/2)*(2 *cc+ 1).N(-1));

6/% 2 term is from 1/2 avg of reluctivities
else

erl(r~c)=(ermatrix(r- 1 ,c- 1)+er matrix(r,c- I)). *(I -(2*cC- 1). A(- I));

err(r,c)=(er -matrix(r- I ,c)+er-matrix(r,c)). *(1 +(2*cc- 1).N- 1));
ert(r,c)=2er~matrix(r- 1, c- 1). *(1 ..(4*cc..2).AN-I))..

+er-matrix(r- I ,c). * (1 +(4 *cc-2).N(I));
erb(r,c)=er-matrix(r,c- 1). *(1 -(4 *cc-2).A(I)) ..

+er-matrix(r,c). *(I +(4*cc-2).A(- 1));
erc(r,c){(er -matrix(r- I ,c- I)+er matrix(r,c- 1)). *(2-~3 *(4*cc-2).A N-1))

+(er-matnix(r- I ,c)+er-matrix(r,c)). *(2+3 *(4*c..2).A(..));
end

else % z-invariance
erl(r,c)=er_matrix(r- I,c- I)+er -matrix(r~c- 1);
err(r,c)--erý_matrix(r- 1 ,c)+er -matrix(r,c);
ert(r~c)=er -matrix(r- I,c-l1)+er -matrix(r- I,c);
erb(r~c)=er~matrix(r~c- 1)+er -matrix(r,c);
erc(r,c)=2*(erl(r,c)+err(r,c)); % 2 term is from 1/2 of average of epsilons

% from left, right, bottom and top terms!!
end
derr-err(r,c) J1 erc(r,c);
derl~erl(r~c) J1 erc(r~c);
dert--ert(r,c) ./ erc(r,c);
derb-erb(r,c) J1 erc(r~c);

dcharge~mat=2*eojI *charge_mat(r,c) J1 erc(r,c);

outerjpts=outerJpts';

middlejpts--middlejpts';

76

%%
%%%%%%%%%O/ý%%%%%%°/o0/%%%%/oo%%%%%%%%%%%°%/o%°0

% The main loop of the iterative algorithm %
%%%%%%%%% %%%%%%%%%%%%% % o%%°A1% %%%%%%%%%%%%%%%
%%%%%%%°/%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

disp('')
disp('Starting the iterative solver now... HEAVY NUMBER CRUNCHING')

N=100;
error=0;
direction=+ I; % error is going up instead of down.
done='n';
iterations=0;
errordat=[1;
sinfdat=[],
while done=='d',

while iterations < MAXITER & (error > TOL I (error <= TOL & direction--1)),

% for 96 iterations do not calculate the norm s(n), becuase it is an
% expensive operation, do this for the last four iterations of every
% 100 iterations

for q=1:96

% apply Poission's equation to every point

v_source mat(r,c)=dcharge mat + vsource mat(r,cr).*derr +
v_source mat(r,cl).*derl+vsource mat(rb,c).*derb+
v_sourcemat(rt,c).*dert;

% reset the source points back to their known values

v_sourcemat(sourcepts)=v known;

% for each floating PEC/PMR object enforce the appropriate boundary
% conditions, flux of D equals zero and equipotential (for E-statics)
% or H normal equals zero, eouipotential, and curl of H equals zero
% (for M-statics)

forj=l :objindex

n num=numnodes(j);

77

f num=num-fhodes(j);
e~aj=er around~pec(I:n-nurnj);

v source_mat(float-nodes(lI:f numj))=ones(l1,f num)*(charge objoj)+
v-source-mat(nodes around~pec(I:n-num~j))'* e~a~pY sun(eý_ap);

end

% fix the boundary nodes with the TGT matrix to simulate the "open"
% boundary

v-source-mat(outer~pts)=inside~v-source mat(middle~pts);

end

% for the last four iterations of every 100, calcualate s(n)

for q=1:4

v-source-mat(r,c)=dcharge mnat + v-source-mat(r~cr). *derr +
v-source mat(r,cl).*derl+v-source-Mat(rb,c).*derb+
v source mat(rt,c). *dert;

v-source-Mat(source~pts)=v known,

forjl :obj index

n -num=num -nodesoj);
f num=numfniodes(j);
eýaj)--eraroundjpec(1: nnumj);

v source mat(float nodes(I:f numj))=ones(I,f num)*(chargeq obj)+
v-source-mat(nodes aroundjpec(1 :n num~j))* e~aj,)/ sum(e~ajp);

end

v source-mat(outerjpts)=inside*v-source mat(middlejpts);

s(q)=sum(sum(v source-mat A 2̂));

end

78

% using the last three norms (s(n)), calculate the lambda coefficient and
% the estimated norm as iterations->inflnity to give a more accurate
% determination of the actual error

lambda I =(s(3)-s(2))/(s(2)-s(1));
s-infinity I =(s(3)-lambdal 1*s(2))/(1 -lambda 1);

s-infinity2=(s(4)-1ambda2*s(3))/(I -lambda2);

s-infinity=(s-infinity I +s-infinity2)/2;

olderror~error;

effor--abs((s(4)-s-infinity)/s(4));

errordat=[errordat error];
sinfdat=[sinfdat s-infinity];

direction--sign(error-olderror);

iterations=iterations+ 100;
disp('')
disp(['Estimated Error: ',num2str(error* 100),

' Iterations: ',int2str(iterations),
'S-inf: ',num2str(s infinity)])

end

mesh(flipud(v source mat))

done='y';

if error@=TOL,
disp(')
disp([bell,The specified error (',num2str(TOL* 100),

'0/6) has been reached.'])
disp('')
disp([The current number of iterations: ',int2str(iterations)])

end

if iterations>=MAXITER,

79

dispC'')
disp([bell,'The maximum number of iterations has been reached,',

int2str(vlA3UTER),' iterations.'])
disp('0)
disp(['The current estimated error is: ',num2str(error* 1 OO),*/%.']);

end

disp(")
newerror-input('Do you wish to modify this? [n] ',es);
if strcmp(newerror,[]), newerror--'n'; end
if newerror=='y'

done='n';

while (error<-TOL I iterations>=MAXITER) & done=='n,

done=Wn;
disp('')

TOL=input('New error tolerance (%/): ')/100;
MAXITER=input(New maximum # of iterations (UNITS OF 100!): ')* 100;

if error<=TOL Iiterations>=MAXITER,
disp('')

disp([bell,'One or both of those conditions is already,
'satisfied!')

disp(")
done~input('Do you wish to try again? [y]',Vs);

if done='n',
done='y';

else
done='n';

end

else

disp('')
disp('Continuing iterative solver ... ')

end

80

end

end

end

if EM -flag==M',
er matrix--boldC r;
co_-1=1/8.854e-12;

end

clear dcharge_mat derr dert derb derl f num n-num c~ay

%%%%O/O/O/%%%%%%O/O/O/%%%%%%%%%%%%%oOoO/O/*/% end of itersoln.m

81

%% makesys2.m: This program will generate the system matrix for the coarse %
%% grid using the geometry media and the TGT coefficients. This %
0/00/0 system matrix sys 7mat will then be modified by matsolve.n %
%% using the appropriate source and object boundary conditions. %

%% This program has been modified to generate the coarse grid %
%% system matrix for both z-invariant and rotationally symmetric %
%% ~systems. dpw 940514%

%% ~Note that different code is required for rotationally %
%% ~symmetric electrostatic and magnetostatic problems. %

if EM flag=='M', % for M-statics the er matrix
hold er-er matrix-coarse; % hold the value of relative
er-matrix-coarse= I.J er-matrix-coarse; % permeability.
eol -=pi*4E-7;

end

if cyl-flag=='C' % rotationally symmetric system

if EM-flag==M'
load cymag I 7.tgt -mat % tgt matrix for magnetostatics (rot sym)

else
load cy267 I 7.tgt -mat % tgt mat for electrostatics (rot sym)

end

else % z-irivariant system
load in267 I 7.tgt -mat

end

N=N- coarse; % # of cells for coarse grid
ltable~looktab(N); % call lookup table routine

% Now, make the matrix!!!!

82

sysý_mat=zeros((N+l)*(N+I)~4,(N+I)*(N+I)~4); %"-4" is to exclude the four
rhs=zeros((N+ 1)*(N+ 1)4, 1); % comners in the system matrix

for eq~num=4N-3:(N+l)*(N+l)~4 % equation # starts at 4N-3 becuase the first
% 4N-4 equations come from the TGT boundary
% condition matrix

pntr--find(ltable==eq~num); %point to the grid point for equation #: ec~numn

c -rowr-rem(pntr,N+I); % current row and column of geometry converted
c-col=ceil(pntr/(N+ 1)); % from the "find" commmand's indexing scheme

t-row~r-c -row-I1;, t_colrc-col; % top row and column
b -row--c_row+ 1;, b -col=c-col; % bottom row and column
I-row--C-row_, I-col=c-col-I; % left row and column
r-row--c-row;, rcol=c-col+ I; % right row and column

t~num=-(tcol- 1)*(N+ I)+t row; % convert row and column info of the above
b -num=(b~col-I)*CN~~1)+b_row; % variables back into the "find"-indexing
1_num=(l col-l)*(N+l)+l row; % scheme
r-num=(rcol- 1)*(N+ I)+r row;

% pre-calculate the averaging of the media

%% Rotationally Symmetric Systems
if cyl~flag=='C' % rotationally symmetric systems
if EM -flag=='M'

er-top = er-matrix-coarse(c row- I,c-col- 1)..
+er -matrix -coarse(c_row-I~ c col);

er-bottom =er-matrix-coarse(c _row~cco- OI-)..
+er_matrix:_coarse(c_row,c_col);

er_left =(er matrix-coarse(c row-i ,c-col-1 ...
+er -matrix coarse(c_rowpc_col-I))..

er-right =(er matrix_co~arse(c row-I,c -col)..
+er-matrix coarse(c-row,c-col))..
(1+1/(2(c col 1)+l));

er-center =(er matrix-coarse(c row-i ,c-cot)..
+er-matrix -coarse(cqrow~c_cot))..
(l-(l/2)(1/(2*(c~col-l)+I)))..
+(er matrix coarse(c_row-I ,c-col-1 ...
+er -matrix coarse(c_row,c-cot-I))..
(I+(112)(I/(2*(c cot-i)-I)));

83

else
a-cot=c-cot-I1; % actual column away ffrom centerline,
erý_top =er -matrix_.coarse(cjrow-1,c-cot-I)*(i-1I(4*acol-2))..

+er -matrix-coarse(c -row-lI,c-cot)*(I + I (4*a-col-2));
er bottom--er matrix coarse(c row,c cot- 1)*(-I I(4*acoI-2))..

+er -matrix 7coarse(cjrow,c cot)*(1+ 1/(4*a-cot-2));
erý_left =(er matrix-coarse(c row-i,c-col-I)..

4-cr- matrix-coarse(c _row,c cot- l))*(1-/(2*a-cot-i)),
er-right -(er -matrix-coarse(c row-i,c-col)..

+er -matrix-coarse(c row,c-col))*(I + /(2*a cot- 1));
er-center=(er -matrix_cooarse(c row-I ,c-cot-l 1).

4-er-matrix-coarse(c_row,ccoI-i))*(l-3/(8*a-col-4))..
+(er-matrix-coarse(c row- i,c cot)..
4-er-matrix-coarse(c _row,c cot))*(1+31(8 *a-cot4));

end

else %% z-invariant systems
er-top =er-matrix-coarse(c row-I ,c-cot-I)+er-matrix coarse(cý_row-i ,c-cot);
er-bottom--er-matrix-coarse(c row,c-cot-i) 4-er-matrix coarse(cý_row,c-cot);
er-left =er-matrix -coarse(cý_row-i ,ccot-lI)+er-matrix-coarse(c _row,c-cot-I);
er-right =er matrix-coarse(c row-1,c-cot) +er-matrix-coarse(c _row,c-cot);
er-center--er-top+er bottom;

end
% fill the system matrix!

sysmat(eqjium,eq~num) =-2*er-center;
sysmat(eq~numItabie(t-num))=ertop;
sysmat(ecjnum,ltable(b~num))=erb.ottom;
sysmat(eq~num,ttable(t -num))=erleft;
sysmat(ec~num,ttable(r-num))=erright;

% generate the Right hand side forcing function

rhs(ec~num)---2*chargematcoarse(crow~ccol)*eo_1;

end

% Modify the inside matrix of tgt coefficients to exclude the 4 corners %

84

insidep=[inside(2:N,:),
insidc(N+2:2*N,:),
inside(2*N+2 :3 *N,:);
inside(3 *N+2:4*N,:)];

insideppW[inside(1,:);
inside(N+I ,:);
inside(2*N+I,:);
inside(3*N+ 1,:)];

[rinp,c-inp]=size(insidep);

sysmat(l1:r inp,r inp+lI:r-inp+c-inp)=insidep;

sysmat(lI :rinp, 1: :rinp)=-eye(r-inp);

if EM-flag==M'N,
er -matrix-coarse~holdCr;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%oOoOO/O/0/O/O/O/O/O/O/ end of makesys2.m

85

%/0/ This will be used to augment the iterative solver by using
0/0/ sparse matrices to solve fine grid system. Updated 940514 dpw

0/8/ makesysf~m: This program will generate the system matrix for the fine
%% grid using the geometry media and the TGT coefficients. This
0/00/0 system matrix sys,_mat will then be modified by matsolvf.m
%% using the appropriate source and object boundary conditions.
%% This program handles either rotationally symmetric or
%% z-invariant systems.

if EM flag==M', % for M-statics the er-matrix
hold-er--er-matrix; % hold the value of relative
er -matrix-- 1 I er-matrix; % permeability.
eol -=pi*4E-7;

end

if cyl~fiag=='C' % rotationally symmetric system

if EM-flag==M'
load cymag_ 51. tgt -mat

else
load cy8O3_51 .tgt -mat

end

else % z-invariant system
load in803_5lI.tgt -mat

end

N=N-fine; % # of cells for coarse grid
Itable=looktab(N); % call lookup table routine

% Now, make the matrix!!?%

86

sys~mat=sparse((N+I)*(N+1)-4,(N+I)*(N+I)-4); % "-4" is to exclude the four
rhs=sparse((N+ I)*(N+ 1)4, 1); % corners in the system matrix

for eq~num:=4*N-3:(N+1)*(N+1)-4 % equation # starts at 4N-3 becuase the first
% 4N-4 equations come from the TGT boundary
% condition matrix

pntr--find(ltable eq~numn); %point to the grid point for equation #: eqjiumn

c-row-rem(pntr,N+ 1); % current row and column of geometry converted
c-col=ceil(pntr/(N+I)); % from the "find" commmand's indexing scheme

t-row--c -row-I;, t-col=c-col; % top row and column
b -row--c-row+ I;, b_col=c-col; % bottomn row and column
I-rowr-c row;, I-col=c col- 1; % left row and column
r-row--c-row;-, r-col=c-col+ 1; % right row and column

t-num=-(t-col-1)*(N+1)+t-row; % covert row and column info of the above
b -num=(b col-l1)*(N+ I)+b -row; % variables back into the "find "-indexing
1_num=(l col-I1)*(N+ I)+l row; % scheme
r~num=(rcol- I)*(N+ 1)+r row;

% pre-calculate the averaging of the media

if cyl flag=-'C' % rotationally symmetric system
if EMI -flagý'M'

er-top = er_matrix(c row-i ,c_col-I 1).
+er -matrix(c row- I,c-col);-

er-bottomn =er matrix(c row c_col-I 1).
+er-matrix(c-row,c-col);-

er-left =(er matrix(c row-i ,c_col-I ..)
+er -matrix(c_row,c col- 1))..
(I -1/(2(c col- 1)-i 1));

er-right =(er matrix(c row-i ,c-col)..
+er -matnix(cjrowqc col))..
* (I+1 +/(2 *(c col- 1)+ 1));

er-center =(er-matnix(c row-I ,c_col)..
+er_matrix(c_row,c-col))..
*(I[(1 /2) *(1I/(2 *(ccoll)+ 1)))..
+(er matrix(c row-I ,c-col-l I..
+er-matrix(c -row,c -col- 1))..
(I I+(I 12)*(1/(2 (c col-10- 1)))

87

else
a-cal=c-cal- 1; % actual column away from centerline
er-top =er-matrix(crow-l,c-col-i)*(i-i/(4*a-col-2))..

+er -matrix(c 7row-I,c-col)*(I+I/(4*a-col-2));
er bottom~er matrix(c row,c-col-I)*(I -I/(4*a-col-2))..

+er_matrix(c row,c_cal)*(1+ 1/(4*a-col-2));
er-left =(er -matrix(c row-i ,c-col-1 ...

+er-matrix(c _row,c _col-1))*(1- I(2*a-cal-I));
erjright =(er -matrix(c row-1I,c-cal)..

+er-matrix(c _row,cý_col))*(1+ i/(2*a-cal- 1));
er-center=(er -matrix(c row- I c-cal-1 I..

+er-matrix(c _row,cý_cal-1I))*(1I-3I(8*a-cal4))..
+(er matrix(c row-i ,c -col)..
+er-matrix(c row,c-col))*(1 +3/(8 *a-cal4));

end
else %% z-invariant system
er-top =er-niatrix(c row-i ,c-cal-I)+er matrix(c row-lI,c-cal);
er-battom=er -matrix(c row c-cal-I) +er-matrix(c raw,c-cal);
er_left =er-matrix(c raw-i, cocl-I)+er matrix(c-rowc cal-i1);
er-rght =er matrix(c row- I,c -cal) +er-matnix(craw,c~col);
er-center--er top+er-bottom;

end
% fill the system matrix!

sys~mat(eq~num,eq~num) =-2 *er -center,
sysmat(ectnum,ltable(t~num))ertop;
sysmat(eq~num,ltable(bnpum)Y=erbattom;
sysmat(eq~num,ltable(l~num))=erleft;
sysmat(ec~num,ltable(rnum))=er~right;

% generate the Right hand side forcing function

rhs(eq~num)---2*chargemat(crow,c-col)*ea-1;

end

% Modify' the inside matrix of tgt coefficients to exclude the 4 comners %

88

insidep=[inside(2:N,:);,
inside(N+2:2*N,:);
insidc(2*N+2 :3*N,:);
inside(3 *N+2:4*N,:)];

insidepp=[inside(1,:),
inside(N+ 1,:),
inside(2*N+ 1,:);
inside(3*N+ 1,:)1;

[r-inp,c-inp]=size(insidep);

sysmat(l 1 :rinp,r inp+l1:r inp+c-inp)=insidep;

sysmat(lI:r-inp, I :r_inp)=--eye(r-inp);

if EM-flag=M',
er -matrix~hold-er;

end

%%%%%%O/%%%%%%%%%%%%%%%%%%%O/O/O/O/O/O/O/O/% end of makesysfm

89

%% This will be used to augment the iterative solver by
%% using sparse matrices to sive the fine grid system.
%% Updated 940107 dpw.

%% matsolvf~m: This program will use the sys,_mat from makesysf m and the
%% source information from voltsrc.m and chargsrc.m and and solve
%% the system of equations for the fine grid.

k=(xcells+ 1)*(ycells+ 1)-4;
vjpntr1 I:k;
ep~rem-col-flag=[];
kp~rem -col -flag=[];
keep col flag--[];
keep row-flag (I;

% find all the floating PEC/PMR and eliminate the need to solve for them, only
% need to solve for one of the potentials for each object

for i=1: numjpec-obj

equaljpots=find(v_source 1 0000+3+i);

[dum,num~eqjpots]=size(equaljpots),

while num eqjpots> 1,

% adding the rows and columns of the equal pots and set the first
% row and column number (equal~pot(1)) to the sum, also add the charges
% on the floating objects

sysmat(:,equaljpots(lI))=sum(sys _mat(: ,equal~pots)Y)';
sysmat(equaljpots(1),:)=sum(sysmat(equal~pots,:));
rhs(equal~pots(l1))=sum(rhs(equaljpots));,

% set the equi-potential remove column flag to the rows and column

90

% corresponding to the floating potentials we don't need to solve for

% anymore.

ep rem col flag=[ep rem coL flag equalp~ots(2 :num,_eq~pots)j;

v~pntr(equaljpots(2:numn_eqjpots))=equal~pots(lI)*ones(l1,num cqjxots- I);

num-eq jots=O;

end

end

% find all the known potentials

vs-zeros(l1,k);
knownjpots---ind(v~source@9999);
[dumn,num~knjpots]=size(known~pots);
vs(knownjpots)=yvsource(knownjpots);

kpryem_col-flag=known~pots;

for i-- Ik

% if either of the flags below contain "i" then keep that row and column

% (U~. set flag!)

if sum(ep rem_col_flag==i)==O & sum(kp~yrnmcolflag=i)0=,

keep__col flag=[keep_2col flag i];

keep rowjfag=[keep row flag iJ;

end

end

% modified the rbs due to the known potentials

rhs--sparse(-sysmat*(vs(lI:k)')+fiill(rhs));

sysmat~sysmat(keepryowAag~keep~pol_flag); % prune the system matrix based

rhs=rbs(keep row flag, 1); % on the flags set above

91

% solve the system! EXPLOIT SPARSITY

v--full(sys_mat\rhs);
v..pntr=v~pntr(I,keep row flag)';
v-soln(vjpntr)=v;
% put back all the equi-potentials for the floating PECIPMR objects
for i=1 :numjpecopbj

equal__pots--find(vý_source= I OOOO+3+i);

[dum~numqec~pots]=size(equalpots);

while numneq~pots>l,

v-soln(equalpots)=v _soln(equal..pots(I))*ones(l1,num~eq~pots);

num,_eq~pots=O,

end

end
v soln(lmown~pots)=vsource(knownpots);
% 6put the solution into a matrix form so that results can be displayed
v-source -mat=zeros(ycells+l1,xcells+ 1);
for i=1: k

pntr--find(ltable==i);
v Fsource mat(pntr)=v soln(ltable(pntr));

end

% fix the corners, since they were not included in the system matrix

v-corner--insidepp*v -soln(xcells*4-3 :xcells*4-3+

v-source-mat(l,1l)==vcorner(1);
v-source-mat(1,xcells+1)=vcorner(2);
v-source_mat(ycells+l1,xcells+l1)=vcorner(3);
v-source_mat(ycells+ 1, 1)v_corner(4);

%%%%%%%%%%%%%%%%%%%%end of matsolvf~m

92

%% qcalc.m: Function to perform a flux integral of the D-Field through the %
0%%0/ rectangular "surface" shown below. %
0%0% %

%% USAGE: [Q]=qcalc(V,erdx,dy) where: V is the Electric potential %
0%00% er is relative permittivity %
%% o<--(xl,y) ------- o dx and dy are the grid spacing %
%% uI-Jil-IlJJJJJJJI %

0 IjjJ_ljChargejjUjj V: (MxN) matrix Units: V %
%% UJLenclosedUJJJi er: (M-I)x(N-1) matrix Units: none %
%% IIIIIllIllllll dxanddy:scalar Units:m %
%% ----- (x2,y2)--->o Q: scalar Units: C/m (z-invariant) %
%% C (rotational sym)%
%% When the function is called, the user will use the crosshairs to indicate %
%% the positions of two opposite corners. The function will return the %
%% amount of charge enclosed or 'error' if the user has entered the corners %
%% outside of the region where V exists or the closed surface contains no %
%% volume. (i.e. the two corners do not specify a box) %
0%0% %

%% This program has been modified to accomodate rotational symmetry %
%% dpw 940430 %

function [q]=q_calc(v,e,dxdy);
load mouse.emg -mat;
global cyl flag
disp(")
disp('1. Press the left button for one corner of the box')
disp('2. Press the left button again for the other corner')
disp('3. Press the right button when you are done')
disp(")
disp('If you press the right button immediately after choosing this option')
disp('it will take you back to the previous screen.')
disp(")

disp(Press any key to continue...')

pause

[xx,yy,button]=ginput(1);

93

blIflag=O;
b2flag=O;
Lower=O;

while button-RightButton I blIflag==O I b2flag=O,

if button--Left_-Button & Lower==O,
bi flag' 1;
X(I)=x
y(l)=yy;
Lower 1;

elseif button--LeftButton & Lower=1,
b2flag~l;
x(2)=xx;
y(2)=yy;
Lower=O;

end

[xx,yy,button]=ginput(1);

end

x--round(xldx);
y~round(y/dy);
[r,c]=size(v);

if sum(x<O)==O & sum(y<O)==O & abs(x(1)-x(2))>1 & abs(y(l)-y(2))>I &
sum(x>c)==O & sum(y>r)==O,

q=O;
eo=8.854e- 12;

if x(l)>x(2), x-[x(2) x(l)]; end
if y(1)<y(2), y=[y(2) y(l)]; end

toprow = r-y(l); bottomrow = r-y(2)- 1;
leftcol = x(l)+1; rightcol = x(2);

for col=leftcol+1 :rghtcol

elr-top = O.5*(e(toprowcol-1) + e(toprow~col));

94

elr -bottom = O.5*(e(bottomrow,col-1) + e(bottomrow,col));
if cyl-flag==C

q = q + (edr top *(v(toprow+ I,col) - v(toprowcol)) +
eir -bottom * (v(bottomrowcol) - v(bottomrow+1~col)))
*(2*pi*(wI.. I/2)*dx);

else
q = q + elr -top *(v(toprow+1,col) - v(toprow,col))+

elr-bottomn * (v(bottomnrow,col) - v(bottomrow+I,col));
end

end
for row-toprow+I :bottomrow

etb left = O.5*(e(row-lIleftcol) + e(row~leftcol));
etb right = O.5*(e(row-l,rightcol) + e(row,rightcol));

if cyLflag=='C'
q = q + etb-left * (v(row,leftcol+ I) - v(row,leftcol))..

* (2*pi*(leftcol../2)*dy) +...

etb_right * (v(row~rightcol) - v(rowrightcol+ 1))..
* (2*pi*(rightcol- 1/2)*dy);

else
q = q + etb-left * (v(row,leftcol+I) - v(row~leftcol)) +..

etb_night * (v(row,rightcol) - v(rownrghtcol+ I))
end

end

x(I)=(x(1)+O.5)*dx;

x(2){(x(2)-O. 5)*dx;

y(2)=(y(2)+O. 5)*dy;

hold on
plot([x(l) x(2) x(2) x(1) x(l)],[y(I) y(l) y(2) y(2) y(I)],'cI-)
hold off

else
q=error';

end

% /91/ Oo0/ Oc / Oo /c66 /60/% / Oo /6Oo /oO/ /oO/ Poe nd o f q c a Ic. m

95

%/0/ solndom.m: This is used to start a new EM-Static problem. It is chosen to %
0/00/0 initialize a new solution domain.%

1/1/ updated 940101 dpw%

dcl

newdomain='y';

if domain_flag=- 1,

newdomain=input([bell,'WARNING: THIS WILL ERASE YOUR PREVIOUS',
'DOMAIN, CONTINUE [n]?: '],Ws);

if strcmp(newdomain,[]), newdomain='n'; end

end

if newdomain=-'y',

domain-flag= 1;

dcc
disp(' DOMAIN REGION SCREEN
disp(")
disp(Trhe dimension entered here determines the area in which you will')
disp('place your sources and media geometry. This area is bordered by')
disp('the dashed blue line around the blue grid.'
disp(")

rot sym=input(Do you want to solve a rotationally symmetric system? [n] ','s');
if strcmp(rot sym,[]), rot_sym'R'; end
if (rot syni='y')j(rot sym=='Y`)

cyl~flag='C';
if EM-flag=='E'

enclosed-str=-'C';
else

enclosed-str==-'A*m';
end

else

96

cyl-flag'R';

end
xmav[-9m9;
xmin=O;
while xmax@O,

xcmax-input([Snter the dimension (in meters) of a!,
#square solution domain:1)

if strcmp(xmax,[]), xmax=-1; end
if xmax(@O,

disp([bell,'Only positive dimensions in this world, thank you!']);
end

end

ymax~xmax;
xcells-N-fine-2;
ycells-N-fine-2;
dxpw(xmax-xinin)/xcells;
dyp=(ymax-ymin)/ycells;
yniaxlymax+2*dyp;
xmax--max+2*dxp;
xcells~xcelis+2;
ycells~ycells+2;
er-matrix--ones(ycells,xcells);
v-source=9999*ones((xcefls+l1)*(ycells+ 1), 1);
v-source-coarse=9999*ones((N_2coarse+1)*(N coarse+ 1), 1);
pecjp,tmatrix--zeros(ycells+l1,xcells+ 1);
pec-conn-matrixizeros(2*ycells+1,2*xcefls+1);
pcmp-jeccponn_matrix;
dx=(xmax-xmin)/xcells;
dy-=(ymax-ymin)/ycells;
charge _mat--zeros(ycells+ I,xcells+ I);
charge _mat corse~zeros(Nsoarse+ 1 N-coarse+ 1);
cg_made=O;
geom~type'f;
redraw2

pause

hold off
end

%%%%%%%%%%%%%%%%%%%%%end of solndom.m

97

APPENDIX B
MATRIX METHOD TGT PROGRAMS

% coefgenc.m
% This program will generate TGT coefficients using the
% matrix solution method for rotationally symmetric electrostatic systems.
% Functions required include: makemmc.m, makemlc.m and makemnc.m.
% Author: David P. Wells
% Date of last revision: 940116
M=input('Enter the Far Dirichlet Boundary Dimension);
N=input('Enter the Computational Grid Dimension ');
M=M-2;
gammac--makemmc(M,N);
while M>N+2

M=M-2;
gammac=sparse(makemmc(M,N)-sparse(makemilc(MN)*inv(gammac) ...

*makemnc(M+2,N)));
end
TGT=(- I)*(inv(gammac)*makemnc(M,N));
TGT=[TGT;TGT(3*N+2,:)]; %% Adding left side TGT coefficients
TGT=[TGT(I,:);TGT]; %% based on symmetry.
TGT(4*N+4,1)=1;
for i=3*N-2:4*N-4

TGT(i+7,i)= 1;
end
TGT---full(TGT);

98

function [x]=makemlc(MN);
% This function makes the Ml matrix for generating TGT
% coefficients given the desired size of M (right side of layer)
% and N (computational grid dimension)
% for rotationally symmetric systems.
% David P. Wells 940302
I=N+2*M+2;
m-l-4;
top=N+(M-N)/2;
r-top-1/2;
side=M;
x-sparse(m,l);
row- 1;
col= l;
for i=l :top

x(row,col)=- 1;
row=row+ l;
col=col+l;

end
col=col+l;
row-row- 1;
for i=1:M

x(row~col)=-1*(1+1/(2*r));

row=row+ 1;
col=col+l;

end
col=col+ l;
row-row- 1;
for i=l :top

x(row,col)=- 1;
row=row+ 1;
col=col+l;

end

99

Ml-fzl(makemIc(5,3))

MI-

Columns I through 6
-1 0 0 0 0 0
0 -I 0 0 0 0
0 0 -1 0 0 0
0 0 0 -1 0 -8/7
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Columns 7 through 12
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

-8/7 0 0 0 0 0
0 -8/7 0 0 0 0
0 0 -8/7 0 0 0
0 0 0 -8/7 0 -1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Columns 13 through 15
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
-1 0 0
0 -1 0
0 0 -1

100

function [Mm]=makemmc(MN)
% This function makes layer self matrices (Mm) for rotationally
% symmetric systems given M (length of right side of layer)
% and N (computational grid dimension).
% David P. Wells 940115
m=N+2*M-2;
top=N+(M-N)/2;
side=M;
rtcorn=top- I +side;
e=ones(m,l);
Mm=spdiags([- 1 *e 4*e -I*e],-1: l,mm);
r-1/2;
for i=l :top

if i--top
Mm(i,i+l)=(- 1)*(l +l/(2*r));

end
ifi-=l

Mm(i,i- l)=(- l)*(l- l/(2*r));

end
r--r+1;
end
r 1/2;
for i=m:-I :rtcorn

if i-rtcom
Mnm(i,i- I)=(-l1)*(1+ 1/(2*r));

end
if i-m

Mm(i,i+1)=(- 1)*(1-l/(2*r));
end

r-r+ 1;
end

101

Mm--full(makemmc(5,3))

Mm=

Columns I through 6
4 -2 0 U 0 0

-2/3 4 -4/3 0 0 0
0 .4/5 4 -6/5 0 0
0 0 -6/7 4 -1 0
0 0 0 -1 4 -1
0 0 0 0 -1 4
0 0 0 0 0 -1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Columns 7 through I I
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
-1 0 0 0 0
4 -1 0 0 0
-1 4 -6/7 0 0
0 -6/5 4 -4/5 0
0 0 -4/3 4 -2/3
0 0 0 -2 4

102

function [xJ=makemnc(M,N);
% This function makes the Mn matrix for generating TGT
% coefficients given the desired size of M (length of right side of layer)
% and N (computational grid size) for z-invariant systems.
% David P. Wells 940115
M=M-2;
m=N+2*M-2;
n=m-4;
top=N+(M-N)/2;
r--top+ 1/2;
side=M;
x-sparse(m,n);
row--I;
cofri;
for i1I:top

x(row~col)- 1;
row-row+ I;
co!=col+ 1;

end
cofrcol- 1;
row--row+ 1;
for fr=1:M

x(row,col)=- I *~(I - 1I(2*r));
row-row+ 1;
col=col+1;

end
coI=col- 1;
row-row+ 1;
for i1 :top

x(row,col)=-I;
row-row+ 1;
coh~col+ 1;

end

103

Mn---full(makemnc(5,3))

Columns 1 through 6
-1 0 0 0 0 0
0 -1 0 0 0 0
0 0 -1 0 0 0
0 0 0 0 0 0
0 0 -6/7 0 0 0
0 0 0 -6/7 0 0
0 0 0 0 -6/7 0
0 0 0 0 0 0
0 0 0 0 -1 0
0 0 0 0 0 -1
0 0 0 0 0 0

Column 7
0
0
0
0
0
0
0
0
0
0
-1

104

% coefmagc.m
% This program will generate TGT coefficients using the
% matrix solution method for magnetostatic
% rotationally symmetric systems.
% Functions required include: magmmc.m, magmlc.m and magmc.m.
% Author: David P. Wells
% Date of last revision: 940514
M-input(!Enter the Far Dirichlet Boundary Dimension ');
N-input(!Enter the Computational Grid Dimension ');
M=M-2;
gammac=magmmc(M,N);
while M>N+2

M=M-2;

gammac=sparse(magmmc(MN)-sparse(magmlc(M,N)*inv(gammac)*magmnc(M+2,N)));
end
TGT=(- l)*(inv(gammac)*makemnc(M,N));
[leng,width]=size(TGT);
TGT=[TGT;zeros(l,width)]; %% Adding left side TGT coefficients
TGT=[zeros(1,width);TGT]; %% based on symmetry.
TGT(4*N+4,1)=O; %% centerline has zero potential
for i=3*N-2:4*N4

TGT(i+7,i)=0;
end
TGT--fuli(TGT);

105

function [x]-magmlc(MN);
% This function makes the MI matrix for generating TGT
% coefficients given the desired size of M (right side of layer)
% and N (computational grid dimension)
% for magnetostatic, rotationally symmetric systems.
% David P. Wells 940514
l=N+2*M+2;
mI-14;
top=N+(M-N)/2;
r-top;
side-M;
x-sparse(m,l);
row- 1;
col=1;
for i=1 ~top

x(row,col)- 1;
row-row+l;
col=col+ 1;

end
col=col+1;
row--row- 1;
for i=1:M

row--row+ 1;
col~col+ 1;

end
col=col+ 1;
row--row- 1;
for i=1 :top

x(row,col)- 1;
row-row+ 1;
coF=col+1;

end

106

MIl-fiullmagmIlc(5,3))

MI =

Columns 1 through 6
-1 0 0 0 0 0
0 -I 0 0 0 0
0 0 -1 0 0 0
0 0 0 -1 0 -10/9
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Columns 7 through 12
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

-10/9 0 0 0 0 0
0 -10/9 0 0 0 0
0 0 -10/9 0 0 0
0 0 0 -10/9 0 -1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Columns 13 through 15
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

-1 0 0
0 -1 0
0 0 -1

107

finction [Mm]-magmmc(MN)
% This fiinction makes layer self matrices (Mm) for rotationally
% symmetric magneostatic systems
% given M (length of righ~t side of layer)
% and N (computational grid dimension).
% David P. Wells 950415
m-N+2*M-2;
top=N+(M-NY/2;
side=M;
rtcom--top- I +side;
e'=ones(m, 1);
M~m-spdiags(I-I *e 4*e -1 *e],- 1: I,mm);
r--1;
for i1 :top

Mm(i,i)--Mm(i,i)-(I/(2*r+ 1))+(1/(2*r- 1));
if i-tlop

end
if i-=I

end
r-r+ 1;

end

for i=(top+l):(rtcorn-1)

end
r--I;
for i~m:- 1 :rtcorn

if i-=rtcorn

end
if i--m

end

end

108

Mm-fil(magmmc(5,3))

Mm =

Columns I through 6
14/3 -4/3 0 0 0 0
-2/3 62/15 -6/5 0 0 0
0 -4/5 142/35 -8/7 0 0
0 0 -6/7 254/63 -1 0
0 0 0 - 1 254/63 -I
0 0 0 0 -1 254/63
0 0 0 0 0 -1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Columns 7 through 11
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
-1 0 0 0 0

254/63 -1 0 0 0
-1 254/63 -6/7 0 0
0 -8/7 142/35 -4/5 0
0 0 -6/5 62/15 -2/3
0 0 0 -4/3 14/3

109

function [x]-magmnc(MN);
% This function makes the Mn matrix for generating magnetostatic TGT
% coefficients given the desired size of M (length of right side of layer)
% and N (computational grid size) for rotationally symmetric systems.
% David P. Wells 940514
M=M-2;
m=N+2*M-2;
n~m4;
top-N+(M-NY/2;
r--top+ 1;
side=M;
x-sparse(m,n);
row- 1;
coM=;
for i=1 top

x(row,col)- 1;
row-row+ 1;
cofrcol+I;

end
cofrcol- 1;
row--row+ 1;
for i=1:M

x(row~col)--- I *(1- l/(2*r- 1));
row-row+ 1;
cofrcol+ 1;

end
col~col- 1;
row-row+ 1;
for i1 :top

x(row,col)=-I;
row-row+ 1;
col=col+1;

end

110

Mnh-l(magmnc(5,3))

Mn--

Columns I through 6
-1 0 0 0 0 0
0 -I 0 0 0 0
0 0 -I 0 0 0
0 0 0 0 0 0
0 0 -6/7 0 0 0
0 0 0 -6/7 0 0
0 0 0 0 -6/7 0
0 0 0 0 0 0
0 0 0 0 -1 0
0 0 0 0 0 -1
0 0 0 0 0 0

Column 7
0
0
0
0
0
0
0
0
0
0

-1

Io

% coefgen.m
% This program will generate TGT coefficients using the
% matrix solution method for z-invariant systems.
% Functions required include: makemm.m, makeml.m and makemn.m.
% Author: David P. Wells
% Date of last revision: 940116
M=input(Enter the Dirichlet Boundary Dimension);
Nfinput('Enter the Computational Grid Dimension ');
M-M-2;
gamma--makemm(M);
while M>N+2

MfM-2;
gamma=sparse(makemm(M)-sparse(makeml(M)*inv(gamma)*makemn(M+2)));

end
TGT=(- I)f*fuil(inv(gammna)*makemn(M));

112

function [x]=makeml(M);
% This function makes the MI matrix for generating TGT
% coefficients given the desired size of M (layer dimension).
% It is a modified version of makemn since pattern is same but transposed.
% David P. Wells 940115
M=M+2;
m=4*M-4;
n-m-8;
N=M-2;
x-sparse(m,n);
x(Mnl)=-1;
row- 1;
col= 1;
while row<(m-(N+ I))

row=row+ 1;
for i=I:N

x(row,col)=- l;
row-row+ 1;
col=col+l;

end
col=col- 1;
end
row-row+ 1;

for i=l:(N-1)
x(row,col)=-l;

row-row+ l;
col=col+l;

end
X-=X,

113

MN-fial(n(akaW5))

M =
Columns I through 6

0 -1 0 0 0 0
0 0 -1 0 0 0
0 0 0 -1 0 0
0 0 0 0 -1 0
0 0 0 0 0 -1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Columns 7 through 12
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 -i 0 0 0 0
0 0 -1 0 0 0
0 0 0 -1 0 0
0 0 0 0 -1 0
0 0 0 0 0 -1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

114

Columns 13 through 18
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 -I 0 0 0 0
0 0 -1 0 0 0
0 0 0 -1 0 0
0 0 0 0 -1 0
0 0 0 0 0 -1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Columns 19 through 24
0 0 0 0 0 -1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 -1 0 0 0 0
0 0 -1 0 0 0
0 0 0 -1 0 0
0 0 0 0 -1 0

115

function [Mm]--makemm(M)
% This function makes layer self matrices (Mm) for z-invariant systems
% given M (layer size).
% David P. Wells 940115
m=4*M-4;
e=ones(m, 1);
Mm=spdiags([- l*e 4*e -I *e],-1: l,mm);
Mm(i,m)=-i,
Mm(m,I)=-;

116

Mm-full(makemm(5))

Mm =

Columns I through 6
4 -! 0 0 0 0
-1 4 -I 0 0 0
0 -I 4 -1 0 0
0 0 -1 4 -1 0
0 0 0 -I 4 -1
0 0 0 0 -1 4
0 0 0 0 0 -1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
-1 0 0 0 0 0

Columns 7 through 12
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

-1 0 0 0 0 0
4 -1 0 0 0 0
-1 4 -1 0 0 0
0 -1 4 -1 0 0
0 0 -1 4 -1 0
0 0 0 -1 4 -1
0 0 0 0 -1 4
0 0 0 0 0 -1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

117

Columns 13 through 16
0 0 0 -1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
-1 0 0 0
4 -1 0 0
-1 4 -1 0
0 -1 4 -1
0 0 -1 4

118

function [x]-miakemn(M);
% This futnction makes the Mn matrix for generating TGT
% coefficients given the desired size of M (layer size).
% David P. Wells 940115
m-4*M~4;
n-m-8;
N=M-2;
x--sparse(m,n);
x(m, I)=-1;
row- 1;
col= 1;
while row<(m-(N+ 1))

row--row+ 1;
for i=1:N

x(row,col)=- 1;
row--row+ 1;
col=col+1;

end
col=col- 1;
end
row-row+ I;

for i=1 (N-i)
x(row~col)=-I;

row-row+ 1;
cofrcol+1;

end

119

Mn--full(makemn(5))

MW=
Columns I through 6

0 0 0 0 0 0
-1 0 0 0 0 0
0 -1 0 0 0 0
0 0 -1 0 0 0
0 0 0 0 0 0
0 0 -1 0 0 0
0 0 0 -1 0 0
0 0 0 0 -1 0
0 0 0 0 0 0
0 0 0 0 -1 0
0 0 0 0 0 -1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
-1 0 0 0 0 0

Columns 7 through 8
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

-1 0
0 0
-1 0
0 -1
0 0

120

APPENDIX C
MONTE CARLO METHOD TGT PROGRAMS

% cylcoffs.m
% Purpose is to create matrix of coefficients for rotationally symmetric
% system for use in EMAG via the Monte Carlo Method.
% Required furnctions include: fhcylwlk.m and unravel.m
% TGT matrix will be saved in a file named cymatrix mat with variable name
% "coeffs"
% David P. Wells 931231
N=input('Enter Computational Grid Dimension ');
M=input('Enter Dirichlet Boundary Size (odd/even if comp grid odd/even)');
R=input('Enter the Number of Walkers ');
coeffs--l;
for i=2:N+2 %%0/ top

new -coeffs--fncylwlk(N,MRF, 1 ,(M-N)/2,i);
coeffs=Ilcoeffs~new-coeffs];

end
for i= 1:N+ 1 %%0/ right side

new -coeffs--ficylwlk(NM,R, 1 ,(M-N)/2+i,N+2);
coeffs=[coeffs;new-coeffs];

end
for i=N+1: -1: :2 %% bottom

new coeffs--fncylwlk(NM,RI ,(M+N)/2+1I,i);
coeffs=Ilcoeffs new-coeffs];

end
coeffs=-[coeffs;(1, :);coeffs];
coeffs=-[coeffs;;coeffs(3 *N+3,:)];
counter=O;
for i=(M+NY/2:-1 :((M-N+4)/2) %%0/ left side using symmetry

new-coeffs;-zeros(lI,4*N-4);
new_coffs(3*N-3+wounter+1)=1;
counter--counter+ 1;
coeffs=[co~effs;new-coeffs];

end
new-coeffs;-zeros(l1,4*N~4);
new coeffs(I)= 1;
coeffs--[coeffs;new -coeffs];
save cymatrix coeffs

121

function [coeffs]=fnicylwlk(N,M,W,Ioops~startrow,startcol)
6/%/ David P. Wells Updated 931027. This function returns a row of the TGT matrix for
% rotationally symmetric systems using the MCM given the coordinates
% of the walker'sstarting point and the following input parameters:
% N= inner matrix dimension
% M= outer matrix dimension
% loops-- number of loops
% W= # of walkers per loop
% startrowr- walker release row
% startcol= release column
L=2;
T={M-N+2)/21-
R=N+ 1;
B=(M+N)/21,
compgrid=zc -3s(N,N);
crnrow-T- 1; %comners of inner grid
crncol=L- 1;
for i= 1: loops

inbound=zeros(I,W);
outbound=zeros(I,W);
row-ones(I,W);
col=ones(1,W);
row-startrow row;
col=startcol*col;
while length(row)-=O

dr=rand(I,length(row));
up-(dr<-.25);

comprand=.25 *(3..ones1 ,length(col))./(2*(col- 1.5)));
lt=((dr>. 5)&(dr<--comprand));
rt=(dr>comprand);
row-row+up-dn;
cofrcol+rt-lt;
inbound=((row--T)&((col>=L)&(col<=R)));
inbound=(inboundj((row--B)&((col>=-L)&(col<=R))));
inbound=(inboundl((col==R)&((row>--T)&(row<--B))));
inbound=(inboundl((col==L)&((row>=T)&(row<--B))));
rowin=row(find(inbound== 1));
colin=col(find(inbound= 1));
for k1 I:length(rowin)
compgrid(rowin(k)-crnrow,colin(k)-crncol)=-.

compgrid(rowin(k)-crnow,colin(k)-crncol)+ 1;
end

122

Outbound-((row.-.I)I(row-M)I(col- I)I(Col=-(M+N+2)/2));
row(find((outbound- 1)I(inbowid I))){j);
col~find((outbound-. 1)I(ibound-1I)))'.[J;

end
end
coeffs~unravel(compgrid);
Coe"r'/(l/oops*W))*coeffs;

123

fimction xunravel(y)
%function unravel takes boundary coefficients from around compgrid and puts
%them in a row vector using a spiral numbering scheme.
% David P. Wells 931030
D=size(y);
d=D(1);
x=y(l,:);
x=[x (y(2:dd)y];
for i=d-1:-1:l

x=[x y(d,i)];
end
for i=d-1:-1:2

x=[x y(i,1)];
end

124

% Dave Wells Updated:931026
% rctcoffs.m
% Purpose is to create a TGT matrix of coefficients for rectangular
% coordinate systems for use in EMAG
% Coefficients will be saved in a file named rcmatrix.mat
% with variable name coeffs
% The coefficient pattern is as follows:

% ABCDE
% P123F
% 08 4G
% N765H
% MLKJI

% Here, the letters represent the relative location
% on the boundary layer and the numbers represent the relative
% locations on the computational grid edges.
% Row A, Column I of the coefficient matrix named "coeffs" is the
% coefficient linking point A on the boundary to point #1 on
% the computational grid. For this example, "coeffs" would be a
% 16x8 matrix.
% This program requires fnrctwlk.m and unravel.m to operate.
N=input('enter the inner grid dimension');
M-input('enter outer grid dimension (odd if inner dimension odd, even if inner is even) ');
R=input('enter the number of walkers ');
coeffs=[];
for i=(M-N)/2:(M+N+2)/2 % top row

newcoeffsrfnrctwlk(N,MR, I,(M-N)/2,i);
coeffs=[coeffs;new_coeffs];

end
for i=(M-N+2)/2:(M+N+2)/2 % right side

new coeffs=fnrctwlk(N,M,R, 1 ,i,(M+N+2)/2);
coeffs[coeffs;new coeffs];

end
for i l(M+N)/2:-I :(M-N)/2 % bottom row

newcoeffs--fnrctwlk(N,MR, 1,(M+N+2)/2,i);
coeffs=[coeffs;newcoeffs];

end
for i=(M+N)/2:-1 :(M-N+2)Y2

new coeffs-ffnrctwlk(N,M,R, 1,i,(M-N)/2); % left side
coeffsff[coeffs;new coeffs];

end
save rc•tatrix coeffs

125

function[coeffs]--fnrctwlk(N,M,W,loops,startrow,startcol)
%% David P. Wells Updated 931027
% This function returns a row of the TGT matrix for z-invariant systems
% given the coordinates of the walker's starting point and the following
% input parameters:
% N= inner matrix dimension
% M= outer matrix dimension
% W= number of walkers per loop
% loops= number of loops (use one unless running out of memory)
L=(M-N)/2+1; % defining left side of computational grid
T=L; % defining top
R=(M+N)/2; % defining right
B=R; % defining bottom
pr=.25; % fraction moving right
pl=.5; % fraction moving left
pu=.75; % fraction moving up
compgrid=zeros(NN); % initializing computational grid location matrix
crnrow=T-1; %corners of inner grid
crncol-L-1;

for i=l :loops % loops used only to avoid "out of memory" situation
inbound=zeros(l,W); % initializing collision with inner grid matrix
outbound=zeros(lW); % initializing collision with outer grid matrix
row-ones(1,W); % creating walker row position vector
col=ones(I,W); % creating walker column position vector
row=startrow*row; % initializing starting release point
col=startcol*col; %
while length(row)--=0 % looping until all walkers have come to rest on

% inner or outer bound
dr=rand(l,length(row)); % creating walker direction vector
rt=(dr<=.25); % choosing those to move right
lt=((dr>.25)&(dr<=.5)); % choosing those to move left
up=((dr>.5)&(dr<=.75)); % choosing those to move up
dn=(dr>.75); % choosing those to move down
row=row+up-dn; % moving some left and some right
col=col+rt-lt; % moving some up and some down
inbound=((row=T)&((col>=L)&(col<=R))); % check for inside collisions
inbound=(inboundl((row--B)&((col>=L)&(col<=R)))); % ditto
inbound=(inboundl((col-=R)&((row>=T)&(row<=B)))); % ditto
inbound=(inboundl((col=L)&((row>=-T)&(row<=B)))); % ditto
rowin=row(find(inbound-=l)); % isolating walkers on inner boundary
colin=col(find(inbound=-I)); % ditto
for k=I :length(rowin) % record Ioc of walkers on inner bound

126

compgrid(rowin(k)-crnrow,colin(k)-crncol)=-
compgrid(rowin(k)-cmrow,colin(k)-crncol)+ 1;

end
outbound=((row-- 1)1(row==-M)I(col== 1)1(col=M)); % finding walkers on

% outer boundary
row(find((outbound==1 I)1(inbound=--1)))(J[; % discarding walkers

% on inner or outer bounds
col~find((outbound= 1)I(inbound I)))-fl; % ditto

end
end
coeffs~unravel(compgrid); % organizing coeffs using spiral number scheme
coeffs=(1/(loops*W))*coeffs; % normalizing coefficients to # walkers released

127

REFERENCES

1. Manke, Jr., R. P., EMA G a 2-D Electrostatic and Magnetostatic Solver in MA TLAB,

Master's Thesis, Rose-Hulman Institute of Technology, Tcrre Haute, IN, October

1992.

2. Wells, D. P. and Lebaric, J. E., "EMAG 2.0 - Enhanced 2D Electrostatic and

Magnetostatic Solver in MATLAB," Conference Proceedings of the 10th Annual

Review of Progress in Applied Computational Electromagnetics, Monterey, CA,

25 March 1992.

3. Sadiku, M. N. 0., "Monte Carlo Methods in an Introductory Electromagnetic

Course," IEEE Transactions on Education, Vol 33. No. 1, Fcbruary 1990.

4. L•baric, J. E., "Open Boundary Simulation for FD's - Transparent Grid Termination,"

paper presented to Computational Electromagnetics class at Naval Postgraduate

School, Monterey, CA, November 1993.

5. Haykin, S. S., An Introduction to Analog and Digital Communications, John Wiley &

Sons, Inc., New York, NY, 1989.

6. Cheng, D. K., Field and Wave Electromagnetics, Addison -Wesley Publishing Co.,

Reading, MA, 1989.

128

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5 101

3. Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5 121

4. Dr. David C. Jenn, Code EC/Jn
Naval Postgraduate School
Monterey, CA 93943-5121

5. Director, Training and Education
MCCDC, Code C46
1019 Elliot Road
Quantico, VA 22143-5027

6. Dr. Jovan E. Lebaric
Campus Box 19
Rose-Hulman Institute of Technology
5500 Wabash Ave.
Terre Hau'te, IN 47803

7. Capt. David P. Wells, USMC 2
1074 Minerva Ave.
Columbus, OH 43229

129

